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Agenda: Gaussian Process for Reduced Models

▶ Problem: Parametric Reduced Order Modeling (PROM)
approach: adapt local reduced bases.

▶ Old Idea: Subspace Interpolation
polynomial interpolation of subspaces in tangent space

🡶 multivalued/discontinuous, deterministic
🡶 slow for large-scale systems

▶ New Idea: Subspace Regression
Gaussian process for subspace-valued function

🡵 more accurate, smooth, allows UQ
🡵 faster, suitable for online computation

RZ, S. Mak, D. Dunson. Gaussian Process Subspace Regression for Model Reduction.
arXiv, 2021. https://arxiv.org/abs/2107.04668.
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1 Problem: Parametric Reduced Order Modeling

2 Old Idea: Subspace Interpolation

3 New Idea: Subspace Regression
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Reduced Order Modeling (ROM)
▶ Full model: Σ = (A,B,C), A ∈ Mn,n, n is very large.

▶ Reduced-order model: Σr = (Ar,Br,Cr), Ar ∈ Mk,k, k is small.
▶ Reduced-order bases V,W for Petrov-Galerkin projection,

e.g. by proper orthogonal decomposition (POD).
▶ Parametric full model Σ(µ), µ ∈ P; parametric ROM Σr(µ).
▶ Applications: design; optimization; control; uncertainty quantification.
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Benchmark Problem: Anemometer
Convection-diffusion PDE:

ρc∂tT = ∇ · (κ∇T)− ρcv∇T + q̇

Linearized ODE: (n = 29,008)

Eẋ = Ax + bu, y = 〈c, x〉
A(p) = (1− p)A1 + pA2, p ∈ [0, 1]

SenL Heater SenR

FlowProfile

The MORwiki Community. Anemometer. MORwiki – Model Order Reduction Wiki, 2018.
Zhang, Mak, Dunson (Duke) GPS MMLDT-CSET 2021 5 / 20



Overview of PROM Methods

▶ local basis at one point
(POD basis, k = 20)

▶ local basis at every point
▶ global basis
▶ interpolate local bases*
▶ interpolate local ROMs
▶ intrpl. local transfer fn.

Relative H2 error of a ROM:

ε =
‖Σ− Σr‖H2

‖Σ‖H2

‖Σ− Σr‖H2 = sup
u∈L2

‖y − yr‖L∞

‖u‖L2

P. Benner, S. Gugercin, K. Willcox. A survey of projection-based model reduction methods
for parametric dynamical systems. SIAM Review, 2015.
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Subspace Interpolation on the Grassmann Manifold
❌ Method: interpolate local bases
▶ Reduced bases span the same subspace =⇒ same ROM
▶ Grassmann manifold Gk,n = {X : X is a k-dim subspace of Rn}
▶ Not a vector space =⇒ linear combination undefined.
✔ Idea: Interpolate tangent vectors.

D. Amsallem, C. Farhat. Interpolation method for adapting ROMs and application to
aeroelasticity. AIAA Journal, 46(7):1803–1813, July 2008.
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Subspace Interpolation Works (Sometimes)

Setup:
▶ use local POD basis, k = 20

▶ 12 points
▶ nearest point as reference

Compare:
▶ local bases (lower bound)
▶ global basis (upper bound)
▶ 5 nearest points in total

▶ use all 12 points
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Subspace Interpolation Fails in Small Sample Sizes

Setup:
▶ use local POD basis, k = 20

▶ 7 points, p = 0:0.166:1
▶ nearest point as reference

Compare:
▶ local bases (lower bound)
▶ global basis (upper bound)
▶ 3 nearest points in total
▶ Results are similar for

nr = 4 or 5.
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Subspace Interpolation Fails in High Subspace Dimensions

Setup:
▶ use local POD basis, k = 40

▶ 11 points, p = 0:0.1:1
▶ nearest point as reference

Compare:
▶ local bases (lower bound)
▶ global basis (upper bound)
▶ 5 nearest points in total

▶ 4 nearest points in total
▶ 3 nearest points in total

Model selection (ref, nr, interp.
method) is an open problem!
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Basics: Gaussian Process (GP) Regression
▶ Unknown function: f : Θ 7→ R, real-valued.
▶ GP prior process: f ∼ GP(µ(x), k(x, x′;ψ)), hyper-parameters ψ.
▶ Likelihood: p(y | f, θ) ∼ N(f, σ2n), non-singular Gaussian.
▶ Conditonal distribution: p(f∗ | f, x∗, x).
▶ Posterior distribution: p(f | y, x) ∝ p(f | x) p(y | f).
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Theory: Gaussian Process Subspace (GPS) Model
▶ task: approximate subspace-valued function f : Θ 7→ Gk,n
❌ (classic) GP only works for Euclidean spaces.
▶ basis representation: f̃ : Θ 7→ Rn×k, f = span ◦ f̃
✔ idea: subspace observation =⇒ equal likelihood on equivalent bases
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The GPS model
Let f : Θ 7→ Rnk be a representation of f, so that f = span ◦ vec−1 ◦ f,
where vec−1 : Rnk 7→ Mn,k. We propose a Gaussian process model for f.

Prior process: f ∼ GP(0, k ⊗ Ink), with kernel k : Θ×Θ 7→ [−1, 1]. This
gives the joint prior:

(m∗,m) ∼ Nnk(l+1)(0,Kl+1 ⊗ Ink) (1)
Assign equal likelihood to equivalence class of representations
[xi] = {vec(XiA) : A ∈ GLk}:

L(mi|Xi) = 1(mi ∈ [xi]) (2)
Predictive distribution given observations:

m∗|X ∼ Nnk(0, Ik ⊗Σ) (3)
Σ(θ) = ε2In + X[XT(K̃l ⊗ In)X]−1XT

The subspace has a matrix angular central Gaussian distribution
M∗|X ∼ MACG(Σ), which degenerates to Uniform(Gk,n) away from data.

Zhang, Mak, Dunson (Duke) GPS MMLDT-CSET 2021 15 / 20



Computational complexity of GPS

Table: Interpolatory PROM methods: flop counts.

Preprocess Subspace ROM Model selection
GPS 5nk2l2 k3l3 2k3l2 k3l4
Subspace-Int[1] 10nk2l2 8nk2 2nk2 †
Matrix-Int 6nk2l2 - 2k2l †
Manifold-Int[2] O(nk2l) - O(k3l)* †
* Coefficient usually ∼ 50 for matrix exp/log.
† Optimal choice of reference ROM and interpolation scheme is an open problem.

Subspace interpolation is the most used method so far, but it scales with n.
Later developments improve online computation cost, but are not as accurate.
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Results: GPS vs. Tangential Interpolation

Setup:
▶ use local POD basis, k = 20

▶ sample size l = 12

▶ smaller sample size, l = 7

Compare:
▶ local bases (lower bound)
▶ global basis (upper bound)
▶ GPS, SE kernel, η = 0.36

▶ Subspace interpolation
▶ Manifold interpolation
▶ Matrix interpolation
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Results: GPS vs. Tangent Interpolation

Setup:
▶ use local POD basis, k = 40

▶ sample size l = 11

Compare:
▶ local bases (lower bound)
▶ global basis (upper bound)
▶ GPS, SE kernel, η = 0.25

▶ Subspace interpolation
▶ Manifold interpolation
▶ Matrix interpolation

GP-subspace retains accuracy
of local bases!
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Summary

GP subspace regression vs. subspace interpolation:
🡵 accuracy: data efficient, works for higher dim, allow UQ.
🡵 speed: independent of system dim, suitable for online computation.

Ongoing and future work:
▶ local approximate GP for better scalability with many paramters
▶ adapt covariance matrix for parametric POD (GPSigma, GP-PCA)
▶ adapt fixed-rank matrix for nonintrusive PROM (GP-SVD)

RZ, S. Mak, D. Dunson. Gaussian Process Subspace Regression for Model Reduction.
arXiv, 2021. https://arxiv.org/abs/2107.04668.

Zhang, Mak, Dunson (Duke) GPS MMLDT-CSET 2021 19 / 20

https://arxiv.org/abs/2107.04668


Software

R pacakge for GPS: https://github.com/rudazhang/gpsr

Zhang, Mak, Dunson (Duke) GPS MMLDT-CSET 2021 20 / 20

https://github.com/rudazhang/gpsr

	Problem: Parametric Reduced Order Modeling
	Old Idea: Subspace Interpolation
	New Idea: Subspace Regression
	Summary

