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Drivers Learn City-Scale Intra-Daily
Dynamic Equilibrium

Ruda Zhang and Roger Ghanem

Abstract— Understanding driver behavior in on-demand
mobility services is crucial for designing efficient and sustainable
transport models. Drivers’ delivery strategy is well understood,
but their search strategy and learning process still lack an
empirically validated model. Here we provide a game-theoretic
model of driver search strategy and learning dynamics, interpret
the collective outcome in a thermodynamic framework, and
verify its various implications empirically. We capture driver
search strategies in a multi-market oligopoly model, which has
a unique Nash equilibrium and is globally asymptotically stable.
The equilibrium can therefore be obtained via heuristic learning
rules where drivers pursue the incentive gradient or simply
imitate others. To help understand city-scale phenomena, we
offer a macroscopic view with the laws of thermodynamics. With
870 million trips of over 50k drivers in New York City, we show
that the equilibrium well explains the spatiotemporal patterns
of driver search behavior, and estimate an empirical constitutive
relation. We find that new drivers learn the equilibrium within
a year, and those who stay longer learn better. The collective
response to new competition is also as predicted. Among empir-
ical studies of driver strategy in on-demand services, our work
examines the longest period, the most trips, and is the largest
for taxi industry.

Index Terms— On-demand service, driver strategy, search,
learning, game theory, Nash equilibrium.

I. INTRODUCTION

ON-DEMAND service is an increasingly important part
of urban transportation, and has significant impacts on

the economy, congestion, and the environment. Current on-
demand mobility services include taxis and ridesourcing apps.
Both the street-hailing and the e-hailing models are compet-
itive and complementary, and will continue to co-exist [1].
Understanding the operation of on-demand transport can
guide regulations on the current market, and help us design
more efficient and more sustainable service models in the
future [2]–[5].

With global positioning system (GPS) trajectory data,
researchers have been able to analyze the spatial-temporal
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demand-supply patterns of on-demand services over the last
decade, see [6] for a review. Of particular interest are driver
behaviors. Drivers for on-demand services work as indepen-
dent contractors, who move around a city to maximize income.
We want to understand what determines driver behavior, and
how drivers learn to adjust their behavior.

Current studies of driver behavior in on-demand services
have formulated driver strategy in various ways. Overall, the
main strategic factors include driving speed (in both delivery
and search), search location, and driver experience. Before
GPS data were available, [7] studied taxi markets in 43 cities
and counties in North America, and found that drivers cluster
in locations with high trip density, regardless of entry policy
and license management. Perhaps the first study of driver
strategy using GPS data is [8], which finds that taxis with
high daily revenue are strategic in choosing areas to serve at
different time of a day to avoid traffic and competition. Refer-
ence [9] studied driver search strategies at different time and
location, and concluded that searching is always better than
waiting. A follow-up work [10] extended the driver strategy
vector to include delivery speed and service-region preference
(proportions of search trips across areas), and found effective
strategies in each factor. Reference [11] fit an econometric
model of driver income with five strategic factors that may
explain income difference, and found that the significant fac-
tors are (in descending order of contribution) delivery speed,
search distance, supply-demand ratio, and trip fare, while
search intensity is not statistically significant. Reference [12]
found that taxis with high single-trip efficiency, defined as the
average income rate between two consecutive pickups, usually
avoid traffic and seek locations with high passenger demand.
Among studies of this kind, [13] is perhaps the largest in scale
to date. Using operational data on 1.87 million Uber drivers
in the US over two years, they find that the income difference
between male and female drivers can be completely explained
by three factors (relative contribution in parenthesis): delivery
speed (1/2), experience on the platform (1/3), and preferences
over where and when to work (1/6). Specifically, drivers earn
more if they drive faster on trip, have more experience, and
drive in locations with lower wait times and higher surge
multipliers.

Other driver decisions can affect income as well, such as
driving safety [14], when to start and stop working [15], [16],
detours and overcharges [17], [18], and passenger denial [19].
But based on the results of [13], we can focus on delivery
speed, search strategy and experience. We note that per [13],
delivery speed is only slightly increasing in experience, but
experience contributes to search strategy and other minor
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strategic factors. Therefore, search strategy and experience
together are as important as delivery speed for driver income.

Fast delivery speed is an important factor that increases
driver income, which has been unambiguously supported by
the research reviewed so far. On the topic of delivery route
choice, although there are seemingly conflicting results, the
consensus is that high-income drivers take faster routes. For
example, [20] and [21] found that most drivers do not travel
along the fastest (or the shortest) paths. However, [8] and [22]
found that high-income drivers can find a faster and more reli-
able route than low-income drivers. Furthermore, [23] found
that taxi drivers usually choose one of the few fastest routes.
An alternative theory for route choice is that drivers anchor
towards urban features on the path, and [24] gave empirical
evidence for it. However, the data is from a prearranged
service, which has a different incentive structure than the on-
demand services we mentioned earlier.

Search strategy is more complex and, in a sense, more inter-
esting. Current models of driver search strategy use decision
theory or game theory. Both [25] and [26] used two-stage
discrete-choice models, such that a driver first chooses the
next pickup location after finishing a trip, and then chooses a
route to get there. In [25], an urban area is divided into zones
and each zone is divided into a network of cells. The first
stage uses a multinomial logit model for the choice of a target
zone, and the second stage uses a sequence logit model for the
sequential choice of cells [27]. In [26], the first stage uses a
Huff model to describe the probability distribution of pickup
locations, which combines location attractiveness and travel
cost; the second stage uses a path size logit model to find a
path on the road network to the target location, considering
path size, path distance, travel time, and intersection delay. For
the decision on whether to return to an airport which is distant
but has high trip values, [28] used a logit model and found
that the most essential factors include the drop-off location and
whether the driver has a “short return ticket”. To account for
uncertainties in travel time, waiting time, and passenger travel
distance at high-value pickup locations such as airports and
train stations, [29] proposed a model where drivers have their
subjective beliefs on such uncertain values, make decisions
to maximize expected reward over a time horizon, and learn
from past experiences by Bayesian updating of beliefs. Their
simulation results show that this Bayesian learning process is
effective in increasing the subjective reward.

Game-theoretic models explicitly consider the search
strategies of other drivers, and predict driver strategies
as a non-cooperative equilibrium. For a static game with
driver–customer bilateral search and elastic demand, [30]
proved the existence of Nash equilibrium (NE) and provided a
solution algorithm via best-response dynamics. In a follow-up
work, [31] studied the comparative statics of taxi equilibrium:
with variable taxi fleet size and trip fare, how does the equilib-
rium outcome change in terms of taxi utilization rate and cus-
tomer wait time, and which combinations maximize taxi profit
and social welfare (conditions known as monopoly optimum
and social optimum, respectively). To account for e-hailing
service, [32] extended the game model of [30] and provided
similar results. Modeling the same problem with a multi-
leader follower game, [33] proved the existence of generalized

TABLE I

GPS TRAJECTORY DATA OF ON-DEMAND SERVICES USED IN
STUDIES OF DRIVER STRATEGY: AN INCOMPREHENSIVE LIST

NE, and provided a solution algorithm that iteratively solves
the augmented variational inequalities of the leader and the
follower. All four studies used numerical simulations instead
of empirical data. [34] used a dynamic spatial oligopoly model
for taxi markets, where drivers choose search locations over a
finite time horizon, and are assumed to know search location
profitability and competitor locations. He proved that there
exists a unique, symmetric equilibrium for the spatial-temporal
distribution of vacant taxis and passenger demand, and used
equilibrium predictions for counterfactual analysis. However,
he did not validate the equilibrium empirically.

Driver experience and learning is a less studied topic.
Besides [13] and [29], [35] showed that neighborhood-specific
local experience has a significant impact on drivers’ search
strategies following drop-offs; and [36] showed that high-
income drivers benefit significantly from their ability to learn
from local and global demand information.

In this paper, we use a game-theoretic model to predict
drivers’ spatio-temporal search strategies as well as individual
and group learning dynamics, and validate these model pre-
dictions with large-scale GPS trajectory data. Following our
initial work [37], [38], we regard the regularity in urban trans-
portation as the equilibrium outcome of individual decision-
making, in response to transportation demand and services.
For on-demand services, given exogenous traffic speeds and
passenger demand, the income maximization of drivers leads
to an economic equilibrium. We formalize drivers’ decision-
making as a non-cooperative game (eqs. (1) and (13)), which
has a unique Nash equilibrium that is stable under simple
learning dynamics such as adaptive learning and social learn-
ing [39]. Besides this microscopic individual-level model,
we also provide an interpretation of the equilibrium in a
macroscopic thermodynamic framework, and describe the laws
of thermodynamics (eqs. (3) to (5)), constitutive relation
(eq. (6)), and fundamental thermodynamic relation (eq. (7)).
With five years of New York City (NYC) taxi trip records [40],
we validate our model with a suite of tests: spatial equilib-
rium (fig. 2a-b), intra-daily equilibrium (fig. 2c), empirical
constitutive relation (fig. 2d), learning process of individual
drivers (fig. 3), and drivers’ adjustment as a group to a new
system (fig. 4). We also discuss the economic efficiency of
taxi transportation, and show evidence (fig. 5) and equivalence
(eq. (8)) of a Markovian formulation of driver search strategy.
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The main contributions of our paper are summarized below.
(1) This is the first large-scale study of driver search strategy
and learning, which complements [13]. (2) We provide a game-
theoretic model that is empirically validated; such models
of driver behavior are not found in prior work. (3) We
give evidence of Markovian search strategy, which is often
hypothesized but not validated in the literature. (4) Among
empirical studies of driver strategy in on-demand services
(Table I), our work examines the longest period, the most trips,
and is the largest for the taxi industry.

While our empirical results cover all years, time of year,
and time of day in the data set, we focus on weekday PM
peaks to validate spatial equilibrium (Table II). This allows us
to infer search route—which is not collected in the data— by
shortest distance routing. In comparison, dynamical changes of
the equilibrium are established at daily and multi-year scales.
Such subsampling is not unique to our work: [13] focused
on drivers in the Chicago metropolitan area instead of the
full US region. Future work may address this limitation using
high-frequency route data.

II. THEORETICAL RESULTS

A. Game Model

We assume that each driver chooses their driving strategy
to maximize income, and we define the strategy of a driver
in service to be how they allocate their service time across
the city (fig. 1a-b). Let E be the set of street segments in the
road network and N be the set of drivers in service. Let six
be the proportion of service time driver i allocates on street
segment x , then the driver’s strategy is si = (six )x∈E , which
sums to 1 (fig. 1c). We can formalize a driver’s decision as an
optimization problem (see section V-C for details):

maximize πi (si ; s−i , E)
subject to si ≥ 0

si · 1 = 1 (1)

Here, with hour as the unit of time, πi is the expected
hourly revenue of the driver, and s−i = ∑

j �=i s j is the
aggregate strategy of other drivers. Environment condition E
includes traffic speed and passenger demand, and is regarded
as constant during short time windows of analysis.

Competition among drivers could lead to specific choices of
strategies, called equilibrium. If we see every street segment
as a distinct market and every driver in service as a multi-
market firm, we can abstract eq. (1) as a game of multi-
market competition among firms of equal capacity [39]. This
game has a unique Nash equilibrium, where all drivers use
the same strategy and marginal driver revenue are uniform
across all searched segments. Moreover, the equilibrium is
globally asymptotically stable under adaptive learning [41]
and/or imitative learning [42]–[44]. Denote this equilibrium
as S∗ = (s∗

i )i∈N , where N is the set of drivers in service.
Because all drivers use the same strategy, let s = ∑

i∈N si ,
we can write S∗ = n−1s∗1T

n , where n = |N | is the number
of drivers in service. The equilibrium can be determined such
that s∗ is the unique point that maximizes a potential function:

�(s) =
∑
x∈E

∫ sx

0
φx(t) dt (2)

where φx(s∗
x ) = (∂πi/∂six )(S∗) is marginal driver revenue on

a segment at equilibrium, and sx = ∑
i∈N six , see fig. 1d.

B. Thermodynamic Interpretation

We can interpret the Nash equilibrium as a thermodynamic
equilibrium. This establishes a macroscopic equilibrium where
aggregate behavior is perceived as a transport phenomenon
built up from individual choices. This macroscopic view
ignores the decision-making and competition of drivers, but
helps understand the outcome of a social system from the
perspective of a physical system.

We regard drivers as interchangeable particles with identical
behavior at equilibrium. Regard total service time s, which
equals the number of drivers in service, as total energy of the
taxi transportation system. Regard potential function � of the
game as entropy of the system. And regard the reciprocal of
equilibrium marginal driver revenue, ψ = 1/φ, as temperature.
Then s, ψ , and � are all state variables of the system at
equilibrium given environment condition E .

Being a state variable and intensive property, temperature
ψ is the driving force of the transport of service time s across
the street segments. As we mentioned earlier, the learning
process of the game always increases the potential function
�(s), which is maximized at equilibrium. When two systems
at equilibrium are put into contact with an interface permeable
to the transfer of service time, s will flow from the system
with higher ψ to the one with lower ψ . At equilibrium, ψ is
uniform across all searched segments. In summary, we can
make the following statements of thermodynamics. Zeroth
law: two taxi systems in contact have the same equilibrium
marginal driver revenue.

ψ1 = ψ2 (3)

First law: taxi transportation is the transfer process of total
service time s, which is a conserved quantity.

ds =
∑
x∈E

dsx (4)

Second law: under fixed demand and traffic state, a closed taxi
system maximizes its potential function.

d� ≥ δs

ψ
(5)

Zeroth law defines equivalent classes of equilibrium, which
are strictly totally ordered by state variable ψ . The manifold
of equilibrium is thus one-dimensional, parameterized by ψ ,
and any other state variable must depend on it. This means
that state space (�, s, ψ) | E has only one degree of freedom,
and this dependency is the constitutive relation of the system
given environment condition E , with explicit form

(�,ψ)(s) | E (6)

Rearranging the exact differential of s(�) | E gives the
fundamental thermodynamic relation of the equilibrium:

ds = ψd� (7)

We test various implications of this theory of thermodynam-
ics in our empirical results.
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Fig. 1. Driver strategy. a–b, Manhattan street network used in this paper, showing characteristics of taxi activity: a, quantile of drop-off per segment length;
b, log2 pickup-dropoff ratio. Black bold line marks the north border of core Manhattan. c, Drivers allocate their service time across the segments, which can
differ. d, Determination of equilibrium. With s drivers, marginal driver revenue ν on a segment at equilibrium is determined by

∑
x∈E sx (ν) = s. Equilibrium

allocation on each segment can then be determined by s∗
x = sx (ν).

Fig. 2. Verification of equilibrium. Using trip records in spring 2011 and spring 2012. a, Probability distribution of 1-norm of driver deviation from average
strategy, in Tue–Thu PM peaks, 6 p.m.–10 p.m., grouped by p-values. 3.66% of drivers have statistically significant (p > 0.05) large deviations (�x��1 > 0.3).
b, Log of search time–revenue ratio on street segments, Mon–Fri 6 p.m.–7 p.m., shifted to a reference value. Local regression (red); prediction intervals
(shade); distribution of log revenue on segments (margin). c-d, Average number of drivers and driver revenue, Wed 5 a.m.–Thu 5 a.m., each dot represents
one minute: c, time series, rectangles mark AM shift (8:30 a.m.–4 p.m.) and PM shift (6 p.m.–4 a.m.); d, trajectory during 5 p.m., red line shows a linear
regression.

III. EMPIRICAL RESULTS

A. Verification of Spatial Equilibrium

To verify that drivers actually follow the theoretical equi-
librium, we proceed in two parts: (1) all drivers shall use
the same strategy; and (2) marginal driver revenue must be
uniform across all searched segments.

Although driver search strategy is not directly observed, it
is proportional to driver pickup probability on each segment
(eq. (11)). If all drivers use the same strategy, each driver’s
pickup probability distribution across segments shall be the
same as that of the overall distribution. To test this implication,
we partition the segments into 10 equi-probable groups, then
a random pickup can be modeled as a categorical random
variable, with equal probability p = 0.1 for each group.
As a sum of such categorical trials, each driver’s pickup count
can then be modeled as a multinomial random variable with
p = 0.1 for each group. We test drivers’ pickup counts in
these groups by a corrected log likelihood ratio of multinomial
distributions [45]. For each driver, the pickup counts are

normalized into a probability vector x = (x1, . . . , x10), which
is then summarized by the 1-norm �x��1 where x� = x−1/10.
Note that �x��1 = 0.2 if the pickups in any one group is
arbitrarily allocated to the other groups; and we consider a
strategy to be a large deviation if �x��1 exceeds 0.3. Figure 2a
shows the distribution of �x��1. Only 3.66% of drivers have
statistically significant large deviations. Regardless of the
arbitrary threshold for large deviation, the result shows that
most drivers use similar strategies. Therefore we can think of
drivers as particles with identical behavior.

Now we verify that all segments have the same marginal
driver revenue, or equivalently, the same temperature, as stated
in the zeroth law eq. (3). We note that when n � 1, φx ≈
πx/sx , where πx is the revenue originated on a segment and sx
is the total service time attributable to the segment. Because at
any moment the number of drivers in service in Manhattan is in
the thousands, this approximation is suitable. So it suffices to
show that πx is proportional to sx , which is the sum of search
time tsx and trip time tpx per unit time. Because the majority
of trips are metered, which is calculated from trip distance
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and time in slow traffic, driver revenue from each trip is
highly correlated to trip duration regardless of driver strategy,
especially when traffic speed is hold stationary. To avoid the
influence of this fact, consider trip time as a linear function
of trip revenue, then πx ∝ sx is equivalent to πx ∝ tsx ,
and we try to show the latter. Because search routes are not
recorded in the trip records, we take trip records between 6pm
and 7pm on weekdays, and estimate search routes between
trips by shortest distance routing. We consider this approach
acceptable because during the selected hours, traffic is roughly
at a uniform congested speed while average search time is the
shortest (3 min, 80% up to 6 min; see [37]), so route deviation
from the shortest path is unlikely. Figure 2b shows log(t̃sx/πx)
versus log(πx), where t̃sx is the estimated search time. The
majority of street segments have similar search-revenue ratios,
while segments with low revenue appear to be over-supplied
and those with very high revenue under-supplied. We note
that, for segments with low revenue, marginal driver revenue
might not be equilibrated since they contribute little to driver
revenue. Our estimation assigns search time equally to each
segment on route, which may underestimate the actual search
time near the pickup location, and therefore underestimate
search time on high revenue segments. Moreover, shortest
path routing provides a single route for trips with the same
origin and destination, so the estimated search time may
be concentrated on a few street segments, which contributes
to estimation error. Therefore, accounting for these factors,
temperature ψ is approximately uniform over space.

B. Equilibrium Dynamics

As environment condition E varies over times of a day,
the equilibrium will also vary. If drivers are free to choose
when to work and are indifferent about working at different
times of a day, by zeroth law eq. (3), driver supply s will
adjust so that temperature ψ is stationary throughout a day.
Equivalently, φ stays the same throughout a day. Note that
marginal driver revenue on a segment and average driver
revenue are approximately the same at equilibrium: because
φx ≈ πx/sx , therefore φ ≈ ∑

x πx/
∑

x sx = π/s. This means
that, given the assumptions, average driver revenue is the same
throughout a day. To verify this, we examine the trajectory of
average driver revenue and number of drivers throughout a
typical weekday, shown in fig. 2c. Average driver revenues
during 8:30am–4pm and 6pm–4am center around $29/hour
and $33.5/hour respectively, and are constant in the sense
that its overall variation is about the same as its short-term
variation. The difference between average driver revenue for
these two periods can be explained by two factors. First, the
total number of taxis is limited and not all is available for the
night shift, so not all drivers who would like to work at night
can get a taxi. Second, the lease rate for day shifts is less than
those of night shifts, so the difference in average driver income
between the two periods is less than that of average driver
revenue. During 4pm–6pm most double-shifted taxis change
drivers, which means supply decisions during this period is not
up to the drivers, so the average driver revenue is not constant.
During 3am–6am very few drivers are at work, and the high
average driver revenue justifies the cost of working when most
people prefer to be sleeping. During 6am–8:30am most day

shift drivers start working, and although the average driver
revenue is not constant, it stabilizes as more drivers become
active.

In contrast to the equilibration of average driver revenue
over time, by constitutive relation eq. (6), marginal driver
revenue on a segment at equilibrium is a decreasing function of
the number of drivers given environment condition: φ(s) | E .
This constitutive relation is hard to measure without controlled
experiments, but can be measured from observational data if
the number of drivers is forced to change much faster than the
environment does, such as during shift transition. In fig. 2d,
the downward trend reflects φ(s) for 5pm–6pm, when people
leave work and taxis return for the night shift. We see that,
with a thousand more drivers in service, average driver revenue
decreases by $2.53/hour.

C. Individual Learning

It is natural to ask if drivers learn to use the same strategy
that results in a spatially uniform marginal revenue. We use
drivers’ first appearance in trip records to infer if they are new
or experience drivers. The rate of new drivers stabilizes around
September 2009, with about 10.23 new drivers each day
since. For new drivers joined each spring from 2010 to 2012,
we compute the 1-norm of their strategy deviation, �x��1,
and compare it with the group of experienced driver who
worked through 2010-2013. In particular, we group each
year’s new drivers by their eventual consecutive years of
driving up to 2013, and track their percentile of �x��1 against
the experienced drivers. Figure 3 provides box plots for the
groups. Note that the experienced drivers, if plotted, would
always have the median and the first and third quartiles at 50,
25, and 75, respectively. For all groups of new drivers who
stayed for at least a year, their strategy deviation decrease
significantly in the second year, with the median reducing
between 10 to 20 percentile. For new drivers who stayed
through 2013 and for at least two years, their strategy deviation
stabilize in the later years and are smaller or the same as the
experienced drivers. Moreover, new drivers who stay longer
always have smaller strategy deviations than their cohorts.
We see that new drivers learn the equilibrium strategy within
one year of driving.

D. Group Adjustment

Changes in taxi regulation affect the equilibrium, which
provide unique opportunities to test the implications of the
theory. On 2013-08-08, NYC TLC launched Street Hail Livery,
also known as green cabs. The new system is allowed to pick
up street-hail passengers outside core Manhattan, defined as
south of West 110th Street and East 96th Street, see fig. 1a-
b. This change gradually increased the supply of street-hail
service outside core Manhattan, and by second law eq. (5) and
constitutive relation eq. (6) this should decrease the marginal
driver revenue on segments therein. By zeroth law eq. (3),
segments within core Manhattan should also have marginal
driver revenue decreased to the same level, which implies
more supply of yellow cabs in core Manhattan where they
have exclusive rights to service. By first law eq. (4), the
proportion of service time yellow cab drivers spent outside
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Fig. 3. Individual learning of equilibrium. Percentile of strategy deviation of new drivers joined in a 2012, b 2011, and c 2010, grouped by years of
consecutive driving up to 2013, size of each group shown in parentheses. Using trip records in springs, Tue–Thu PM peaks, 6 p.m.–10 p.m.

Fig. 4. Group adjustment of equilibrium. Pickup probability in the region
bordering core Manhattan, in the second halves of 2012 (black) and 2013
(red), 7-day rolling value with 90% bootstrap confidence band. Significant
events and period marked by dashes and shade.

core Manhattan should decrease. Figure 4 compares the time-
series of percentage of pickups in the region bordering core
Manhattan in 2012 and 2013. This percentage slightly reduced
after the 2012 fare raise, greatly increased during Hurricane
Sandy, and moderately increased during Thanksgiving and
Christmas. Excluding irregularities due to Hurricane Sandy
and the holidays, the percentage is stable in the last two
months of both years, with a robust decline in 2013. This is
consistent with the implication of our model, and exemplifies
the use of the thermodynamic interpretation of the equilibrium
in explaining macroscopic phenomena.

IV. DISCUSSION

A. Markovian Search Strategy
An alternative formalization of driver search strategy is

by Markov chain: given the current location, the driver
chooses probabilistically a neighboring location to search.
This Markovian formalization has been adopted in game
models [30], [32], [33], decision models [25], [26], [29],
and hinted at in statistical studies [9], [10], [35]. Although
a Markovian search strategy may be simple to describe and
implement, it is difficult to estimate (since it involves a
square matrix instead of a vector), and does not allow a
simple thermodynamic interpretation. In this section, we give
evidence of a meaningful Markovian search strategy, and show
that it is equivalent to our definition of search strategy.

If drivers are non-strategic, a null hypothesis for the Markov
strategy would be random walk. However, fig. 1b suggests

Fig. 5. Markov strategy. Using trip records in spring 2011 and spring
2012, Mon–Fri 6 p.m.–7 p.m. a, Trip origin–destination matrix among
10 equal-sized groups of street segments in decreasing order of pickups. Rows
normalized by 1-norm to show transition probability. Margins show pickup
and drop-off counts in each group. b, Search start–end matrix among the
groups. Rows normalized by max-norm.

that drivers tend to move back to the area with more pickups.
We test out this hypothesis in fig. 5. We see that, regardless
of trip origin, locations with more pickups tend to be popular
destinations as well. Overall, the drop-off distribution is more
spread out than the pickup distribution. On the other hand,
the search matrix is diagonal dominated and skews towards
more popular locations. Because search time is typically short
in the PM peak [37], most drivers do not need to drive far to
find passengers, which explains the diagonal dominance. The
skews reveal driver strategy: drivers move back to popular
pickup locations. In particular, group 1 accounts for 42%
of pickups and 32% of drop-offs, and comparatively very
few drivers find their next pickup in other groups; as the
drop-off location gets less popular, the skew away from less
popular groups and towards more popular ones become more
prominent. The results are similar for other time of day.

Here we show the equivalence of Markov strategy and
search time allocation vector. A Markov strategy can be
represented by a search transition matrix Qxy , a right stochas-
tic matrix that gives the transition probabilities from every
segment x to every neighboring segment y while the driver
is searching for passengers. Let Pxy be the empirical pickup
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transition matrix, i.e. row-normalized trip origin-destination
matrix. Let px be the probability of pickup per search on a
segment x , and Px = diag{px}. We note that Pxy can be easily
computed, see e.g. fig. 5a, while px and Qxy can be computed
if high resolution trajectory data is available. The equilibrium
search time allocation vector s∗ and the Markov strategy Qxy
satisfy the equation:

s∗ = s∗[Px Pxy + (I − Px)Qxy] (8)

To see this, think of an ensemble of vacant vehicles, each
searching for pickup. After one time step, most continue to
search on neighboring streets; some become occupied and
exit the ensemble, and join the ensemble again after drop-
off. Note that the drivers are non-interacting. Since we are
only counting the allocation of search time, in long-time limit
each driver would have the same allocation of search time,
which equals the ensemble average at any time, and satisfies
the equation as written. Because px and Pxy are determined
by the environment condition, Qxy uniquely determines s∗.

B. Implementation of Search Strategy

Here we point out how a driver would implement a search
strategy. Picture a driver i who is familiar with city traffic
and hailer and driver distributions throughout a day. To earn
more money, the driver has a plan on how much time to
spend searching different places for hailers; the plan may
vary for different time of day. At the beginning of i ’s shift,
the driver heads to the region where the plan allocates the
most search time. After delivering the first pickup, the driver
is likely to be in a region with less planned search time.
To avoid over-searching the current region, i drives back to
the preferred region. If i goes through the preferred region
without a pickup, the driver would circle around and continue
the search, as long as the total search time within the region
is not too long compared with the plan. The driver does not
always search or immediately go back to the region with the
highest planned search time, but would balance the allocation
of realized search time to approximate the plan. But when i
drops off at a location with very little planned search time, the
driver would directly head to a place nearby where the plan
gives more search time, since a single pass would typically
suffice for the drop-off location. Because the total search
time is limited for any given shift, the driver would not be
able to perfectly implement the strategy in one shift. But
aggregated over time, the distribution of realized search time
could reasonably approximate an intended strategy.

C. Economic Inefficiency of the Equilibrium

In multi-market oligopoly of equal capacity, the Nash
equilibrium is not economically efficient in general, that is,
the total income is not maximized [39]. For taxi industry,
this means that the decentralized optimization of income by
self-interested drivers does not optimize total income of the
industry. Maximum total income may be achieved if drivers’
search behavior is directed by a central planner. Considering
that ridesourcing apps match passengers with drivers, this
optimum may be attainable. However, drivers can still have
a spatio-temporal search strategy and can cancel and accept

trips strategically [13]. Therefore, there is no guarantee that
the on-demand transport service industry can maximize its
profit by centralized planning alone, such as via scheduling,
routing, pricing, and ridesharing [2]–[5]. To achieve economic
efficiency, we need to consider drivers’ strategic behavior
when we design new models of on-demand service.

D. Modeling Demand and Supply

This paper focuses on modeling driver search strategy,
where implications of the equilibrium are validated using short
time windows during which passenger demand and driver
supply can be seen as exogenous. With this modeling choice,
the only strategic component is the drivers’ allocation of search
time. Another interesting problem is to study the demand
and supply in on-demand mobility services. Such models
must treat passenger decisions and driver supply decisions as
endogenous, and are therefore distinct from our current study.

In [38], we propose a matching dynamic of passengers and
taxi drivers, and use the observed pickup data and equilibrium
supply to back out the unobserved demand at street segment
level. For on-demand services provided by transportation net-
work companies (TNCs), the demand and supply dynamics
are necessarily different, which merit separate studies. Perhaps
surprisingly, in [38] we show that taxis out-perform TNCs in
high-demand locations. Future demand-supply studies should
look deeper into the differences and the interaction between
on-demand services. This would help guide regulations such
as congestion charges, to combat congestion and pollution.

V. MATERIALS AND METHODS

A. Taxi Trip Records

The New York City (NYC) Taxi and Limousine Com-
mission (TLC) started its Taxicab Passenger Enhancement
Program (TPEP) in late 2008, which collects electronic trip
record of its Medallion taxis (aka yellow cabs). TLC releases
TPEP records to the public per the Freedom of Information
Law of New York State. We have gathered the records
from 2009 to 2013, the first five calendar years since TPEP
devices were installed in all 13,237 Medallion taxis. The
data set contains over 870 million trips and 50,297 frequent
drivers. Each trip record contains medallion ID (for vehicles),
hack license (for drivers), latitude, longitude and time stamp
of pickup and drop-off, trip distance, fare amounts, and
other attributes. We use the ID fields to link a taxi between
consecutive trips, and derive new attributes for use in our
studies [37], [38]. The original and processed data are available
for reuse at [40]. For many of the empirical analyses in this
paper, we subset the data to short time windows to meet the
assumption of exogenous environment condition. See [38] for
the time sampling procedure. See [37] for more details on the
data set.

B. Road Network and Map Matching

We use OpenStreetMap (OSM) data for the public
non-freeway vehicular road network in NYC. Specifically,
we include OSM ways whose highway tag take one of
the following values: trunk, primary, secondary, tertiary,
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TABLE II

TIME PERIODS USED IN THE EMPIRICAL ANALYSES IN THIS PAPER

unclassified, residential. To make the road network strongly
connected, we removed tunnels, bridges, and link roads. The
filtered OSM map has 8,928 locations and 11,458 edges.
We use Open Source Routing Machine (OSRM) to create a
compressed graph of 6,001 edges. We exploit another module
in OSRM to match GPS locations to the nearest segment,
where longitudes and latitudes are transformed in Mercator
projection for isotropic local scales of distance. The modified
code is available at https://github.com/rudazhan/osrm-backend.

C. Driver Decision-Making

The behavioral rule of taxi drivers can be simply expressed
as follows: taxi drivers maximize their income by choosing
their driving strategy. We ignore drivers’ exit decisions, and
assume that individuals who drive a taxi can earn at least as
much income as their cost, i.e. their alternative income. When
this condition does not hold, rational individuals would not be
driving a taxi. Here we show that this income maximization
is strategically equivalent to revenue maximization, and we
formalize each driver’s decision as an optimization problem.
For the industrial organization of NYC taxis, [37] gives a com-
prehensive analysis with references to rules and regulations.

The income structure of a taxi driver depends on the
property rights of the taxi in use. Owner-drivers are Medallion
owners who also drive their taxis, so they have no lease to
pay. Drivers of driver-owned vehicles lease a Medallion from
fleets, agents, or Medallion owners, and either own or finance
the purchase of the vehicle, at different lease costs. Other
drivers lease both the Medallion and the vehicle; the lease
may optionally include a fixed amount for gasoline surcharge
since 2012-09-30. In any type of such leases, the driver pays
a fixed amount of money either per shift which lasts 12 hours,
or per week in longer-term leases.

Taxi drivers also pay for fuel usage (if not covered by
lease), which depends on vehicle model, vehicle speed, and
acceleration. As of vehicle model, most are gasoline or hybrid-
electric vehicles: at any time during 2009-2013, at most 23 of
the 13237 Medallion taxis use diesel or compressed natural
gas vehicles. For gasoline and hybrid light passenger vehicles
operating at urban traffic speed (16-40 km/h or 10-25 mph),
fuel consumption per hour is almost constant, see [46]. This
means that fuel cost per service time can be seen as a constant
for each taxicab regardless of speed—we do not consider taxis
parked by the curb with engine off actively in service. Even
without this observation, fuel cost per service time would still
be approximately constant for a driver, as long as the driver
has consistent driving speeds and acceleration patterns.

A taxi driver earns the remaining fare and tips after paying
for lease, fuel, or both. Although vehicle maintenance is
another cost to drivers who own the vehicle, it is not relevant to

the driver strategy of our interest. Formally, the hourly income
ui of driver i derives from hourly trip revenue πi , minus hourly
fuel cost fi , minus amortized hourly lease payment ri :

ui = πi − fi − ri (9)

The amortized hourly lease payment by the driver is ri =
Ri/Ti , where Ti denotes driver total service time during the
lease term, and Ri denotes lease payment, i.e. rent of the
Medallion taxicab. Depending on the lease, fi or ri may be
zero. Since fi and ri are constant for driver i in any given
shift, they do not affect the driver’s driving strategy. Thus,
the objective of a driver is strategically equivalent to trip
revenue πi .

What driving strategy can drivers use to maximize revenue?
Taxis in service are either vacant or occupied: when vacant,
drivers search the streets for hailers; when occupied, drivers
take the passengers to their destination. Drivers can freely
choose how they spend their search time over the street
network. Once they find hailers, drivers will stop the search
and pick them up. (In real life, not all taxi drivers pick up
every hailer they meet. For profitability, security, or end-of-
shift concerns, they may discriminate against hailers based on
the destination, race, or other factors. See NYC 311 records
for complaints about taxis service denial.) Taxi fare rate is
set by the city government, which may be metered or has a
flat rate, depending on the destination. Under flat rate, drivers
are best off taking the fastest path. Metered rates charge by
distance or duration, based on a speed threshold, which are
typically set such that drivers have no incentive to drive slow.
Although drivers do have an incentive to take routes longer
than the fastest path, passengers typically are motivated to
supervise trip duration. In case of driver fraud, detouring is not
a common strategy [18]. Thus, we assume that a taxi driver’s
delivery strategy is to take passengers to their destination
via the fastest path, so trip duration between two specific
locations only depends on traffic and driving speed. We see
that, consistent with the discussion in Section I, the only
strategic elements for taxi drivers are driving speed and how
they allocate their search time.

Now we formalize drivers’ search strategy. Let N be the set
of taxi drivers currently in service. Let G = (V , E) be the road
network within the urban area being studied, where V is the
set of intersections and dead ends, and E is the set of street
segments. Street segment x ∈ E has length lx , with traffic
speed vx and taxi search speed ṽx . Define demand rate μdxy
as the frequency of hailers start hailing on segment x who are
going to segment y; such a group of hailers have impatience
μt xy = 1/ETxy , the reciprocal of hailer mean patience. Within
a short time interval, environment condition E = (v,µd ,µt )
can be considered as constant, where v is the vector of traffic
speeds, and µd and µt are matrices of hailer demand and
impatience. Search strategy for driver i can be defined as the
spatial distribution of supply rates µsi , where μsix = (µsi)x
is the frequency at which driver i enters segment x as a vacant
taxi. Equivalently, driver search strategy can be defined as the
distribution of driver’s search time per unit time:

tsix

t
= lx

ṽx
μsix (10)

Authorized licensed use limited to: Duke University. Downloaded on January 11,2022 at 23:33:34 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG AND GHANEM: DRIVERS LEARN CITY-SCALE INTRA-DAILY DYNAMIC EQUILIBRIUM 9

This shows that on each segment, driver search time is linearly
related to driver supply rate. Define pickup rate μpixy as the
frequency at which driver i picks up passengers on x going
to y. These attributes naturally aggregates on each segment:
μpx = ∑

i

∑
y μpixy , μsx = ∑

i μsix , μdx = ∑
y μdxy,

and μt x = 1/ETx . Pickup rate can thus be expressed as a
function of supply rate, demand rate and hailer impatience:
μpx(μsx , μdx , μt x). [38] proposed a class of pickup models
and proved that the pickup rate functions are increasing,
strictly concave, and arbitrarily differentiable, with respect to
supply rate; for three representative models, analytical forms
of the pickup rate functions are also provided.

We now relate driver search strategy with driver revenue.
Let 	xy be the revenue of a single trip from x to y, which
only depends on traffic speeds v. We can write hourly revenue
originated on x as πx = ∑

y 	xyμpxy and average revenue
of a trip originated on x as 	x = πx/μpx . Assume patience
and destination are approximately uncorrelated for hailers with
the same origin, which means ∀x, y ∈ E, μt x ≈ μt xy . Then
hailers on the same segment have an equal chance of being
picked up regardless of their destination:

∀x ∈ E, μpxy ∝ μdxy,∀y ∈ E

Thus, the average revenue for a trip originated on x only
depends on traffic speeds and demand rates: 	x (v,µdx) =∑

y 	xyμdxy/μdx . Since drivers are assumed not to discrim-
inate hailers:

∀i ∈ N,∀x ∈ E, μpixy ∝ μpxy,∀y ∈ E

Driver revenue originated on a segment πix = ∑
y 	xyμpixy

can thus be written as πix = ∑
y 	xyμpxyμpix/μpx =

	xμpix . Since each pass of a vacant taxi has an equal chance
of picking up a hailer regardless of the driver:

∀x ∈ E, μpix ∝ μsix ,∀i ∈ N (11)

We have πix = 	xμpix = 	xμpxμsix/μsx . Driver hourly
trip revenue can thus be expressed with explicit function
dependency as:
πi =

∑
x∈E

πix =
∑
x∈E

	x(v,µdx)μpx(μsx , μdx , μt x)
μsix

μsx

A more analytically convenient definition of driver search
strategy is driver’s allocation of service time. Service time
tix = tsix + tpix is the total time driver i spends searching and
delivering trips originated on x during a period of time t . The
rationale of using service time distribution as driver search
strategy instead of supply rate or search time is that: service
time is a conserved quantity and identical for all drivers;
meanwhile, service time is monotonic in supply rate and
preserves properties of the pickup rate function. Let txy be
the trip duration from x to y, which only depends on traffic
speeds v. The average duration of a trip originated on x
is t x (v,µdx) = ∑

y txyμdxy/μdx = ∑
y txyμpxy/μpx , with

reasoning similar to average trip revenue 	x . The proportion
of time driver i spends delivering trips originated on x is thus
tpix/t = ∑

y txyμpixy = ∑
y txyμpxyμpix/μpx = t xμpix =

t xμpxμsix/μsx , with reasoning similar to πix . Together with

eq. (10), the proportion of service time driver i allocates on x
can thus be written as:

six = tsix + tpix

t
=

(
lx

ṽx
+ t x

μpx

μsx

)
μsix (12)

This shows that on each segment, driver service time is also
linearly related to driver supply rate: ∀x ∈ E, six ∝ μsix ,
∀i ∈ N . From eq. (12), service time on a segment
sx = μsxlx/ṽx + μpx t x . With pickup rate function
μpx(μsx , μdx , μt x) and constant environment condition E ,
pickup rate is implicitly a function of service time: μpx(sx , E).
Each taxi driver must allocate all the service time among the
street segments:

∑
x tix = t , or equivalently

∑
x six = 1.

The search strategy of taxi driver i is thus si ∈ Si , where
the strategy space Si = 
|E |−1, a simplex of dimension one
less than the number of segments. Now we can formalize the
optimization problem of a taxi driver:

maximize
∑
x∈E

	x (v,µdx)μpx(sx , E) six

sx

subject to si ≥ 0

si · 1 = 1 (13)

Now we prove that pickup rate μpx (sx , E) is also increasing,
strictly concave, and arbitrarily differentiable with respect
to sx , so that eq. (13) satisfies the requirements of multi-
market oligopoly [39]. With constant environment condition
E , the implicit function can be abstracted to z = ax + by,
where z = sx , x = μsx , y = μpx , a = lx/ṽx , and
b = t x ; y(x) is increasing, strictly concave, and arbitrarily
differentiable, while a, b > 0 are constants. Our proposition is
thus equivalent to: y(z) is also increasing, strictly concave, and
arbitrarily differentiable. Differentiability is simply preserved
by the linear relation. Since z(x) = ax + by(x) is increasing,
its inverse x(z) is thus also increasing; by composition, y(z) =
y(x(z)) is also increasing. By implicit differentiation, dy/dz =
y �(x)/(a+by �(x)), and thus d2y/dz2 = ay ��(x)/(a+by �(x))3.
Since y �(x) > 0 and y ��(x) < 0, y ��(z) < 0, which means y(z)
is also strictly concave.
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