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Abstract. Subspace-valued functions arise in a wide range of problems, including parametric4
reduced order modeling (PROM), parameter reduction, and subspace tracking. In PROM, each5
parameter point can be associated with a subspace, which is used for Petrov-Galerkin projections of6
large system matrices. Previous efforts to approximate such functions use interpolations on manifolds,7
which can be inaccurate and slow. To tackle this, we propose a novel Bayesian nonparametric model8
for subspace prediction: the Gaussian Process Subspace (GPS) model. This method is extrinsic and9
intrinsic at the same time: with multivariate Gaussian distributions on the Euclidean space, it induces10
a joint probability model on the Grassmann manifold, the set of fixed-dimensional subspaces. The11
GPS adopts a simple yet general correlation structure, and a principled approach for model selection.12
Its predictive distribution admits an analytical form, which allows for efficient subspace prediction13
over the parameter space. For PROM, the GPS provides a probabilistic prediction at a new parameter14
point that retains the accuracy of local reduced models, at a computational complexity that does not15
depend on system dimension, and thus is suitable for online computation. We give four numerical16
examples to compare our method to subspace interpolation, as well as two methods that interpolate17
local reduced models. Overall, GPS is the most data efficient, more computationally efficient than18
subspace interpolation, and gives smooth predictions with uncertainty quantification.19

Keywords: Gaussian process, Grassmann manifold, parameter adaptation, re-20

duced order modeling, subspace, uncertainty quantification21

1. Introduction. In this paper we propose a method to solve the following formal22

problem. Consider a subspace-valued mapping f : Θ 7→ Gk,n from a parameter space23

Θ ⊂ Rd to the Grassmann manifold Gk,n, which is the set of all k-dimensional subspaces24

of the Euclidean space Rn. Given function evaluations at l points, (θi,Xi = f(θi))
l
i=1,25

construct a probabilistic surrogate model g such that g(θ∗) is a probability distribution26

on Gk,n concentrated near f(θ∗) for any point θ∗ ∈ Θ.27

1.1. Motivation. Numerical models can accurately predict many phenomena28

in science and engineering, with wide-ranging applications such as turbomachinery29

[29], ocean modeling [48], and biomedicine [10]. Yet, high-fidelity models must resolve30

multiple physics, multiple scales, complex geometry, and stochasticity. This leads to31

large-scale dynamical systems that incur major computational costs, especially when32

they need to be solved repeatedly. Other applications require real-time or embedded33

computing based on limited computational resources. In both cases, one needs to reduce34

the cost of solving large systems of differential equations. Reduced order modeling35

(ROM) approximates the full model with a reduced order model, which is a much36

smaller system of differential equations that takes significantly less time and storage37

to simulate. ROM often provides a speedup of several orders of magnitude, and has38

been used in many types of problems in scientific computing [8].39

In many use cases, the full model itself depends on some parameters, to allow40

variations in material, geometry, loading, initial conditions, or boundary conditions.41

However, the accuracy of reduced models often declines quickly as parameters change,42
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2 R. ZHANG, S. MAK, AND D. DUNSON

so we want to develop a reduced model that is also a function of the parameters.43

This is called parametric reduced order modeling (PROM), which is useful for design,44

control, optimization, uncertainty quantification, and inverse problems. Since most45

ROM methods are based on Petrov-Galerkin projection, which projects the model46

state space onto a low-dimensional subspace, one approach to PROM is to approximate47

the mapping from the parameters to such subspaces [8].48

Subspace-valued mappings also arise in other areas of scientific computing. Active49

subspace methods [12] reduce the input space of a real-valued function to a low-50

dimensional subspace called the active subspace. For functional outputs, e.g. spatially51

varying fields or time series, such active subspaces become a function of space or time.52

Time-varying subspaces also arise in subspace tracking [13] and ROM [6].53

1.2. Previous methods. A natural idea to solve this problem is to interpo-54

late subspaces as a function of the parameters. However, this is infeasible since the55

Grassmann manifold is not a vector space and linear combination is undefined. To56

circumvent this difficulty, [3] proposed a method that takes the interpolation to tangent57

spaces of the Grassmann manifold, which are vector spaces. It comes in three steps.58

Given a target parameter point, it chooses a few nearby parameter points and maps59

the associated subspaces to the tangent space of one of them via the Riemannian60

logarithm. Then the tangent vectors are interpolated as a function of the parameters,61

using any traditional interpolation method. Finally, the interpolated tangent vector62

is mapped back to the Grassmann manifold via the Riemannian exponential, which63

gives the predicted subspace. We will refer to this method as subspace interpolation.64

In fact, this three-step approach applies to any Riemannian manifold, as long as65

effective algorithms exist for the Riemannian exponential and logarithm maps [2, 4].66

This approach is extrinsic, i.e. referring to other sets and structures, which introduces67

distortions to the map.68

Another type of method uses the Riemannian center of mass of weighted data69

points. The global or local Riemannian center of mass is the set of global or local70

minimizers of the sum of weighted squared Riemannian distances [1]. As before, the71

parameter-dependent weights can use any interpolation scheme such as splines [19] or72

Lagrange polynomials [40], both of which were introduced in the context of geodesic73

finite elements. Similarly, in the statistics literature, [37] proposed global and local74

regression models with predictors in a Euclidean space and random responses in a75

metric space. These methods are intrinsic, i.e. involving operations entirely on the76

manifold, so they avoid the limitations of mapping to a tangent space. However, their77

computation requires iterative algorithms for Riemannian optimization, and only local78

minimizers can be found. So far their uses are mostly for low-dimensional manifolds,79

with limited applications in PROM [35].80

Zimmermann [49] reviewed interpolation methods on the Grassmann manifold and81

other matrix manifolds in the context of model reduction. More recently, he introduced82

Hermite interpolation of parameterized curves on Riemannian manifolds [50], which83

uses derivative data. All these methods are deterministic, while probabilistic methods84

for subspace approximation have not been explored in the literature.85

1.3. Contribution. We propose a new Gaussian process (GP) model for the86

approximation of subspace-valued functions, which we call the Gaussian process sub-87

space (GPS) model. Instead of using differential geometric structures of the Grassmann88

manifold as in [3], the GPS uses matrix-variate Gaussian distributions on the Euclidean89

space to induce a probability model on the Grassmann manifold. Our method therefore90

yields a probabilistic prediction of the subspace response, with intrinsic characteri-91
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zation of its predictive mean and uncertainty. Specifically, the mean prediction is a92

k-subspace of the span of the observed subspaces, and the latter also covers most of93

the predictive uncertainty. This GP model is flexible and yet well-guided: it can be94

used with any correlation function on the parameter space, and the function form and95

hyperparameters can be optimized via specific model selection criteria.96

The main advantages of our method are summarized as follows. (1) Data efficient :97

accurate prediction requires only a small sample size l, even when subspace dimension k98

and parameter dimension d are large. (2) Computationally efficient : its prediction cost99

does not depend on ambient dimension n, and thus it is suitable for large-scale problems100

and online computation. (3) Flexible: It is a flexible Bayesian nonparametric model101

that is robust against model misspecification. (4) It provides uncertainty quantification,102

which gives a probabilistic description of a predicted subspace.103

In our observation, GPS is much more accurate than subspace interpolation [3],104

which is in turn much more accurate than other PROM methods [4, 36]. Such data105

efficiency can be attributed to two factors. First, our method is intrinsic, so it does not106

suffer from distortions due to pulling back the mapping to a tangent space. Second, it107

has clear rules for model selection, while the other methods are often subject to model108

misspecification, due to arbitrary choices of reference point, subsample points, and109

interpolation schemes.110

1.4. Related work. The authors have worked on estimating functions whose111

domains or codomains are manifolds. For inputs on an unknown embedded submanifold,112

[44] proposed a GP model that attains the minimax-optimal convergence rate, without113

estimating the manifold. To allow for noisy inputs and better scalability, [21] first114

projects the input to random subspaces, and then applies a GP model. For inputs on115

a known embedded submanifold, [25] proposed an extrinsic GP, while [33] proposed116

an intrinsic GP, with heat kernel as the covariance function. For outputs on an117

embedded submanifold, [26] proposed a non-GP method, which applies an extrinsic118

local regression and then obtains manifold estimates via projection [46].119

While our method extends GPs to mappings that take values in the Grassmann120

manifold, we are not the first to define GPs on Riemannian manifolds. Wrapped Gauss-121

ian process (WGP) regression [30] approximates mappings to a general Riemannian122

manifold, using distributions induced by Gaussian distributions on tangent spaces.123

However, this approach encounters problems when the manifold has a finite injectivity124

radius, as is the case for Grassmann manifolds. In particular, one cannot calculate the125

induced probability density function (PDF) on the manifold or the intrinsic mean. In126

contrast, our proposed approach produces analytic forms for predictive quantities that127

admit efficient computation, albeit restricted to Grassmann manifolds.128

1.5. Article structure and notations. Section 2 provides basics of the algebra129

and statistics of some matrix manifolds. Section 3 presents the theoretical foundation130

of our GPS model, and Section 4 gives an algorithm for prediction. Section 5 discusses131

model selection for our model. Section 6 overviews ROM and discusses the use of132

GPS in PROM in the context of existing methods. Section 7 gives several numerical133

experiments: one to visualize the posterior process, and three to access its accuracy in134

benchmark PROM problems. Section 8 concludes with a discussion on practical issues.135

Additional text is included in Supplementary Materials. An R package accompanying136

this paper is available at: https://github.com/rudazhang/gpsr.137

Notations. Scalars are in lowercase, n, k, l, d; vectors in boldface lowercase, m,xi,θ;138

matrices in boldface uppercase, M,Xi,Kl. Sets are in non-boldface uppercase, Θ, Gk,n;139

subspaces in Fraktur script, X,M; equivalence classes in brackets, [M], [m].140
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4 R. ZHANG, S. MAK, AND D. DUNSON

2. Preliminaries. Because we are building a probabilistic surrogate of subspace-141

valued mappings, it is helpful to review the algebra and statistics of the Grassmann142

manifold and some related matrix manifolds. For some basics of the algebra and143

differential geometry, see e.g. [7, 47]; for a reference on the statistics, see [11].144

2.1. Matrix manifolds. Let Mn,k be the set of all n-by-k real matrices, which145

can be identified as the Euclidean space Rn×k. The set of all full-rank n-by-k matrices146

is M∗
n,k = {M ∈ Mn,k : rank(M) = min(n, k)}. When k = n, it coincides with the147

general linear group GLn, which consists of full-rank order-n matrices.148

The Stiefel manifold Vk,n consists of all orthonormal k-frames in the Euclidean149

n-space: Vk,n = {X ∈ M∗
n,k : XTX = Ik}, where k ≤ n and Ik is the order-k150

identity matrix. The order of the subscripts is reversed by convention. When k = n,151

the Stiefel manifold coincides with the orthogonal group O(n). Define projection152

π : M∗
n,k 7→ Vk,n, such that for any M ∈M∗

n,k with a thin singular value decomposition153

(SVD) M = VΣUT , V ∈ Vk,n, U ∈ O(k), we have π(M) = VUT . Although the SVD154

is not unique, this mapping is uniquely defined.155

The Grassmann manifold Gk,n consists of all k-subspaces of the Euclidean n-space:156

Gk,n = {span(M) : M ∈M∗
n,k}, where span(M) denotes the subspace spanned by the157

columns of M. Every element of Gk,n is a subspace, which is often represented by a158

basis. For example, everyM ∈M∗
n,k representsM = span(M), the column vectors ofM159

form a basis of M, and every element in its equivalence class [M] = {MA : A ∈ GLk}160

represents M as well. We call M a basis representation of M. In particular, every161

X ∈ Vk,n represents X = span(X), and its column vectors form an orthonormal basis162

of X. We call X a Stiefel representation of X.163

The Grassmann manifold is often identified with the set of rank-k symmetric164

projection matrices Pk,n: let S(n) be the set of order-n symmetric matrices, define165

Pk,n = {P ∈ S(n) : P2 = P, rank(P) = k}. This identification is possible because166

span() is a bijection from Pk,n to Gk,n. Given a Stiefel representation X, a subspace X167

can thus be uniquely identified as XXT . Due to this explicit identification, probability168

distributions on the Grassmann manifold can be induced through distributions on169

Pk,n, with the corresponding PDF being: p : Pk,n 7→ R≥0,
∫
Pk,n

p(P)µ(dP) = 1, where170

µ is the normalized invariant measure on Pk,n under the group action of GLn.171

2.2. Probability distributions. Let S+(n) be the set of order-n positive-definite172

matrices. Let M ∈ Mn,k, Σ1 ∈ S+(n), and Σ2 ∈ S+(k). The n-by-k matrix-variate173

Gaussian distribution Nn,k(M;Σ1,Σ2) is the distribution of Y = Σ
1/2
1 ZΣ

1/2
2 +M,174

where Z is a random n-by-k matrix whose entries are independent standard Gaussian175

random variables. The vectorized matrix Y is an (nk)-dimensional Gaussian random176

vector with a special form of covariance matrix: vec(Y) ∼ Nnk(vec(M),Σ2 ⊗ Σ1),177

where vec() denotes vectorization of a matrix by stacking its columns, and ⊗ is the178

Kronecker product.179

The matrix angular central Gaussian distribution MACG(Σ) is a probability180

distribution on Vk,n, with PDF p(X;Σ) = z−1|XTΣ−1X|−n/2, where | · | denotes181

the determinant, normalizing constant z = |Σ|k/2, and parameter Σ ∈ S+(n). This182

parametric family contains the uniform distribution: since p(X; In) = 1, we have183

MACG(In) ∼ Uniform. The parameter of the MACG distribution is identified up to184

scaling: for all Σ ∈ S+(n) and c ∈ R>0, MACG(Σ) = MACG(cΣ).185

Any probability distribution on Mn,k or Vk,n that is invariant under right-186

orthogonal transformation induces a probability distribution on Gk,n [11, Thm 2.4.8]:187

let p be a PDF on Mn,k such that p(M) = p(MQ) for all M ∈Mn,k and Q ∈ O(k), if188
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M ∼ p, let X = π(M) ∼ pV and XXT ∼ pG, then pV (X) = pV (XQ) for all Q ∈ O(k),189

and pG(XXT ) = pV (X). Because the MACG distribution on Vk,n is invariant under190

right-orthogonal transformation, it defines a family of distributions on Gk,n with the191

same PDF. We call it the MACG distribution on Gk,n.192

These three distributions are related: let M ∼ Nn,k(0;Σ, Ik) where Σ ∈ S+(n);193

let X = π(M), then X ∼ MACG(Σ) and XXT ∼ MACG(Σ). Due to this property,194

one can easily sample MACG(Σ): generate M ∼ Nn,k(0;Σ, Ik), and project it via π.195

3. Gaussian process subspace prediction. We now present the proposed196

Gaussian Process Subspace (GPS) model. Because GP models take values in Euclidean197

spaces, they are not directly applicable to approximate subspace-valued mappings198

f : Θ 7→ Gk,n, where the codomain is the Grassmann manifold. Instead, we may199

find vector-valued mappings f : Θ 7→ Rnk that are representations of f , in the sense200

that f = span ◦ vec−1 ◦ f . Here, ◦ denotes the composition of two mappings and201

vec−1 : Rnk 7→ Mn,k denotes the “inverse” of vec(), that is, constructing a matrix202

columnwise from a vector. Such representations are not unique, and we denote the set203

of representations as F = {f : f = span ◦ vec−1 ◦ f}. Now f can be identified with F ,204

or equivalently, any distribution supported on F .205

GP models extend naturally to approximate distributions on a set of functions.206

Let X = f(θ) with a basis representation X. Recall that X has an equivalence class207

[X] = {XA : A ∈ GLk}. Let x = vec(X), whose equivalence class can be written as208

[x] = {vec(XA) : A ∈ GLk}. Assume that f has a GP prior, we may assign equal209

likelihood to [x]. We can then proceed to derive the posterior and the predictive210

distributions. In the following, we provide modeling details and analytical solutions211

for this approach.212

3.1. Model specification. We start by specifying a prior for the representations.213

Without other information on f , an uninformative prior is for f(θ) to be uniformly214

distributed on Gk,n. We can achieve this by assigning f(θ) ∼ Nnk(0, Ink), the nk-215

dimensional standard Gaussian. To see this, let matrix M = vec−1(f(θ)), then216

M ∼ Nn,k(0; In, Ik) is a matrix-variate standard Gaussian; let subspace M = span(M),217

then M ∼ MACG(In) ∼ Uniform. We assign a correlation structure as follows. Let k :218

Θ×Θ 7→ [−1, 1] be a correlation function, i.e. a positive definite kernel with k(θ,θ) = 1219

for all θ ∈ Θ. For any finite collection of input points θ = (θi)
l
i=1, let mi = f(θi),220

and let Kl be the order-l correlation matrix with entry [Kl]ij = k(θi,θj). We assign221

the function values m = (mi)
l
i=1 a prior joint distribution m ∼ Nnkl(0,Kl ⊗ Ink).222

Compactly, we can write this GP prior as f ∼ GP(0, k ⊗ Ink). This is the simplest223

covariance structure for f .224

Without a likelihood function, this GP prior gives predictions as follows. Let θ∗225

be a target point and m∗ = f(θ∗). We have the prior joint distribution:226

(3.1) (m∗,m) ∼ Nnk(l+1)(0,Kl+1 ⊗ Ink)227

where Kl+1 = [1 kT
l ;kl Kl] and kl = (k(θ∗,θi))

l
i=1. If we write K22 = Kl ⊗ Ink and228

K12 = kT
l ⊗ Ink, by properties of multivariate Gaussian distributions, the conditional229

distribution of m∗ given m can be written as:230

(3.2)

m∗|m ∼ Nnk(K12K
−1
22 m, Ink −K12K

−1
22 K

T
12)

= Nnk

(
l∑

i=1

[K−1
l kl]imi, (1− kT

l K
−1
l kl)Ink

)
231
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6 R. ZHANG, S. MAK, AND D. DUNSON

We assign equal likelihood to the equivalence class of representations. Assume232

that we have function evaluations Xi = f(θi) with Stiefel representations Xi ∈ Vk,n.233

Let xi = vec(Xi) and [xi] = {vec(XiA) : A ∈ GLk}. For mi = f(θi), the likelihood234

function gives:235

(3.3) L(mi|Xi) = 1(mi ∈ [xi])236

The posterior distribution of m given observations X = (Xi)
l
i=1 is derived from237

the prior and the likelihood (3.3) via Bayes’ rule:238

(3.4) p(m|X) ∝ exp

{
− 1

2
mT (Kl ⊗ Ink)

−1m

} l∏
i=1

1(mi ∈ [xi])239

3.2. Predictive distributions. The predictive distribution of m∗ given observa-240

tions X is obtained by integrating the conditional distribution (3.2) over the posterior241

distribution (3.4). We summarize the result as follows:242

Theorem 3.1. Let X = [X1 · · · Xl] be the matrix that combines Xi by columns,243

and X = diag(Xi)
l
i=1 be the matrix with Xi as diagonal blocks. Let ε2 = 1− kT

l K
−1
l kl244

and v = K−1
l kl. If v ∈ Rl

̸=0,
1 let Dv = diag(v) and K̃l = (DvKlDv)

−1. The predictive245

distribution of m∗ is:246

m∗|X ∼ Nnk(0, Ik ⊗Σ)247

Σ = ε2In +X[XT (K̃l ⊗ In)X]−1XT(3.5)248249

The proof is quite lengthy and thus deferred to section SM1. This theorem shows that,250

given observations: (1) the matrix M∗ = vec−1(m∗) has a matrix-variate Gaussian251

distribution, M∗|X ∼ Nn,k(0;Σ, Ik); and (2) the subspace M∗ = span(M∗) has an252

MACG distribution, M∗|X ∼ MACG(Σ) (see subsection 2.2).253

The predictive distributions admit an intuitive interpretation. Since Σ is positive254

semi-definite, there is an eigenvalue decomposition (EVD) Σ = Qdiag(λ)QT , where255

λ ∈ Rn
≥0 are in decreasing order and Q ∈ O(n). Therefore we can simulate M∗|X as256

M∗ = Σ1/2Z = Qdiag(λ)1/2QTZ, where Z ∈Mn,k is a random matrix of standard257

Gaussians. The columns of Z are scaled by the square root of the eigenvalue in each258

eigenspace; therefore the range (i.e. column space) of M∗ is more likely to align with259

the top eigenspaces of Σ. Recall that M∗ = span(M∗). We have the following results.260

(1) The global Riemannian center of mass of M∗|X is span(V), where V is the first k261

columns of Q. (2) The uncertainty of M∗|X is compactly described by the eigenvalues262

λ: the larger an eigenvalue is, the more important is the associated eigenspace; and263

the mean prediction is more useful if (λi)
n
i=k+1 are small relative to (λi)

k
i=1.264

A main feature of our GP model is that, while its construction involves the265

extrinsic Euclidean space Rnk of basis representations of subspaces, its predictive266

distribution is intrinsic to the Grassmann manifold Gk,n. In particular, our model does267

not involve tangent spaces or the Riemannian exponential, and thus it is not subject to268

the distortions associated with applying local tangent approximations. Moreover, the269

function space explored by the GPS is much broader than the existing interpolation270

1The condition of no zero entry in v(θ) holds almost everywhere in Θ, but it breaks most notably
when predicting at sample points: v(θi) = ei, which means Σ is singular at sample points and close
to singular nearby. In these cases, one needs to be careful with matrix inversion in implementing the
prediction algorithm in section 4.
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methods, so our model is more flexible and robust to model misspecification. Perhaps271

surprisingly, the GPS has closed-form expressions for its predictive distributions, which272

enables efficient computation for subspace prediction and uncertainty quantification.273

While Theorem 3.1 is concerned with point predictions on the Grassmann manifold,274

our GPS model also induces joint distributions on Gk,n and can be used to generate275

random subspace-valued functions (see section SM2).276

4. Prediction algorithm. From Theorem 3.1 and the discussion thereafter we277

see that, to compute the predictive distribution, one needs the EVD of Σ. Even with278

Σ available, the EVD would cost O(n3), which is intractable for large n. Here we give279

an efficient method to compute this.280

4.1. Efficient EVD of Σ. Denote Π = XT (K̃l ⊗ In)X and Σ̌ = XΠ−1XT .281

We note that K̃l,Π > 0 and Σ̌ ≥ 0. Let r = rank(X) ≤ min(n, kl), then Σ̌ also282

has rank r and therefore r positive eigenvalues. From the form of Σ̌, we see that its283

top-r eigenvectors span the range of X. Let X = ṼR̃P̃T be a rank-revealing QR284

decomposition, such that Ṽ ∈ Vr,n has r orthonormal columns, R̃ ∈ Mr,kl is upper285

triangular, and P̃ is a permutation matrix. Denote order-r matrix S = ṼT Σ̌Ṽ and let286

S = Q̊diag(λ̊)Q̊T be an EVD where λ̊ is descending and Q̊ ∈ O(r). Let V = ṼQ̊ and287

let Q = (V,V⊥) ∈ O(n) be an orthogonal completion. Let λ̌ = (λ̊,0n−r) where 0n−r288

is the vector of zeros with length n− r. Then we have an EVD: Σ̌ = Qdiag(λ̌)QT .289

Because Σ = Σ̌+ ε2In, we have an EVD of Σ:290

(4.1) Σ = Qdiag(λ̌+ ε21n)Q
T

291

Here 1n is the vector of ones with length n. We see that, for a complete probabilistic292

prediction, we only need a rank-revealing QR of X, an EVD of S, and ε2. For the293

mean prediction, we only need the top-k eigenvectors of S.294

We can simplify the computation of S as follows. Note that ṼTX = R̃P̃T and295

P̃−1 = P̃T . Because S = ṼT Σ̌Ṽ and Σ̌ = XΠ−1XT , we have S = R̃(P̃ΠP̃T )−1R̃T .296

Let order-(kl) Gram matrix □ = XTX, which has a block matrix structure □ =297

[□ij ]
l
i,j=1 with □ij = XT

i Xj . Note that Π similarly has a block matrix structure298

Π = [Πij ]
l
i,j=1 with Πij = k̃ij□ij , where k̃ij = [K̃l]i,j . The construction of Π can be299

written in a compact form: Π = □◦ (K̃l⊗Jk), where ◦ denotes the Hadamard product300

and Jk = 1k1
T
k is the order-k matrix of ones. Let Π̃ = P̃ΠP̃T and let Π̃ = LLT be a301

Cholesky decomposition, where L ∈Mkl,kl is lower triangular. Let L̃ = L−1R̃T ∈Mkl,r302

by solving linear equations, which is also lower triangular, then we have S = L̃T L̃.303

We formally describe the prediction procedure in two parts: Algorithm 4.1 only304

needs to be done once, and Algorithm 4.2 is needed for each prediction.305

Algorithm 4.1 GPS: Preprocessing

Input: observation X = [X1 · · · Xl].
1: Compute Gram matrix: □← XTX.
2: Rank-revealing QR: X = ṼR̃P̃T .

Output: Gram matrix □; global basis Ṽ; upper triangular R̃; pivoting P̃.

4.2. Computational cost. Here we analyze the computational cost of each step306

in floating point operations (flops), accurate up to the dominant term. In Algorithm 4.1,307

line 1 takes nk2l2 flops; line 2 takes O(nklr) flops, and if r ≈ kl, this requires about308
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8 R. ZHANG, S. MAK, AND D. DUNSON

Algorithm 4.2 GPS: Prediction

Require: correlation function k(·, ·); preprocessing output (□, Ṽ, R̃, P̃).
Input: sample (θi)

l
i=1; target θ∗; truncation size t ∈ {k, k + 1, · · · , r}.

1: Construct correlation matrix and vector: kij ← k(θi,θj), ki ← k(θ∗,θi).

2: Solve linear equations: v← solve(K,k), K̂← solve(K,diag(v)−1).

3: Construct matrix: Π← [Πij ]
l
i,j=1, where Πij ← v−1

i k̂ij□ij .

4: Cholesky decomposition: P̃ΠP̃T = LLT .
5: Solve linear equations: L̃← solve(L, R̃T )

6: Cross product: S← L̃T L̃.
7: Truncated EVD: S = V̊ diag(λ̊)V̊T , where λ̊ has length t.
8: Compute noise variance: ε2 ← 1− kTv.

Output: principal directions V = ṼV̊; principal variances λ̊; noise variance ε2.
Note: May return Ṽ and V̊ instead of V to avoid matrix multiplication.

4nk2l2 flops using the Householder QR with column pivoting [16]. In Algorithm 4.2,309

line 1 evaluates the correlation function l2/2 times; line 2 takes l3/3 flops for Cholesky310

decomposition, and 2l3 for forward and back substitution; line 3 takes k2l2/2 flops;311

line 4 takes k3l3/3 flops; line 5 takes k3l3/3 − (kl − r)3/3 flops, due to the upper312

triangular structure in R̃; line 6 takes r3/3+(kl−r)r2 flops, due to the lower triangular313

structure in L̃; line 7 takes O(r2t) with classical or randomized algorithms [22]; and314

line 8 takes 2l flops. Note that K and its Cholesky decomposition can be reused for315

future predictions. Overall, with n > kl and assuming r ≈ kl and t = k, Algorithm 4.1316

gives an overhead cost of about 5nk2l2 flops if we use the Householder QR with column317

pivoting, and Algorithm 4.2 gives a cost of about k3l3 flops per prediction.318

An alternative version of Algorithm 4.2 is to conduct a truncated singular value319

decomposition: L̃ = V̊ diag(σ̊)WT , and then return V̊ and λ̊ = σ̊2. Although this320

avoids the cross product in line 6 and thus saves about k3l3/3 flops, truncated321

SVD can take a significant amount of time and eliminate the saving. Theoretically,322

the truncated SVD takes O(rklt) with classical algorithms, and O(rkl log t) with323

randomized algorithms [22]. But in practice, the truncated SVD appears to be more324

costly than the truncated EVD. Since truncated SVD gives a less accurate result than325

truncated EVD, we consider Algorithm 4.2 as the reference version.326

Note that the matrix multiplication V = ṼV̊ takes 2nrk flops for t = k, which327

would dominate the prediction cost if n > kl2/2. However, this cost can be avoided328

if V is not explicitly needed. In PROM problems, to compute an order-k reduced329

matrix Ak = VTAV, one may precompute an order-r matrix Ar = ṼTAṼ, and330

then compute Ak = V̊TArV̊. Since A is usually sparse, the cost of a matrix-vector331

multiplication Ax is usually Tmult = O(n). Then this approach has an overhead cost332

of 2nk2l2 + klTmult flops, and only takes about 2k3l2 flops per prediction.333

5. Model selection. To make predictions with a GP model, we need to specify334

a covariance function; this is called model selection. Although the kernel k(·, ·) can be335

arbitrary, it is often specified in a form that depends on some hyperparameters [38,336

Ch. 4]. For example, the squared exponential (SE) kernel is:337

(5.1) k(θ,θ′;β) =

d∏
i=1

exp

[
− (θi − θ′i)

2

2β2
i

]
338
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where length-scales β = (βi)
d
i=1 are the hyperparameters. GP models with the SE339

kernel are smooth, and the length-scales can be understood as characteristic distances340

along each parameter dimension before the function values become uncorrelated.341

One can set the hyperparameters to optimize a certain criterion, see e.g. [38,342

Sec 5.4] and [41, Sec 3.3]. For GPS, we recommend minimizing the leave-one-out343

cross validation (LOOCV) predictive error, measured in Riemannian distances. (Other344

distances between subspaces may be used as well, but we choose Riemannian distance345

for concreteness.) In this section we analyze and give an algorithm to compute this346

criterion. Section SM3 provides a procedure to compute its gradient, and section SM4347

discusses some alternative criteria.348

A rule-of-thumb length-scale. In our experience, the predictive performance of349

GPS is not very sensitive to hyperparameters, so one may use certain default values350

to trade accuracy for reduced computational cost. For the SE kernel, one may set the351

length-scales to 3d3/2/l relative to the parameter ranges, and expect good predictions.352

5.1. LOOCV predictive error. To measure predictive error, we need a score353

of dissimilarity for pairs of subspaces. There are many metrics defined on the Grass-354

mann manifold, see e.g. [45] for a list. Among them, the most commonly used is the355

Riemannian distance, which is the length of the shortest curves connecting two points356

in a Riemannian manifold. The Riemannian distance between subspaces X,Y ∈ Gk,n357

is the 2-norm of their principal angles, which can be computed as: [7]358

(5.2) dg(X,Y) = ∥ arccosσ(XTY)∥359

Here, X,Y ∈ Vk,n are representations of the subspaces, and σ(·) denotes the singular360

values of a matrix. Let V−i represent the mean prediction for target θi, using the361

remaining data points (θj ,Xj)j ̸=i. The LOOCV predictive error can be defined as:362

(5.3) LLOO =

l∑
i=1

d2g(Xi,V−i) =

l∑
i=1

k∑
j=1

(
arccosσj(X

T
i V−i)

)2
363

Here we use the sum of squared errors for its smoothness and, with a slight abuse of364

notation, we replace the subspaces with their Stiefel representations.365

5.2. Efficient computation of LLOO. To compute the LOOCV predictive error366

in (5.3), we need XT
i V−i. First we derive a form of V−i. Analogous to (3.5), for the367

leave-one-out prediction we have:368

(5.4) Σ−i = ε2−iIn +X−i[XT
−i(K̃−i ⊗ In)X−i]

−1XT
−i369

Here, all the quantities are defined without the i-th observation. Similar to the analysis370

in subsection 4.1, denote Π−i = XT
−i(K̃−i ⊗ In)X−i and Σ̌−i = X−i(Π−i)

−1XT
−i. Let371

r−i = rank(X−i), then the top-r−i eigenvectors of Σ̌−i span the range of X−i, which372

is a subset of the range of X. Recall that X = ṼR̃P̃T is a rank-revealing QR. Let373

S−i = ṼT Σ̌−iṼ and let S−i ≈ V̊−i diag(λ̊−i)V̊
T
−i be a rank-k truncated EVD, then374

ṼV̊−i are the top-k eigenvectors of Σ̌−i. Since V−i consists of the top-k eigenvectors375

of Σ−i and Σ−i = ε2−iIn + Σ̌−i, we have V−i = ṼV̊−i.376

To avoid big matrix multiplication, let C̃ = ṼTX = R̃P̃T , which has the form377

C̃ = [C̃1 · · · C̃l] where C̃i = ṼTXi ∈Mr,k. We have XT
i V−i = XT

i ṼV̊−i = C̃T
i V̊−i.378

Similarly, let C̃−i = ṼTX−i = [· · · C̃j · · · ]j ̸=i, and we have S−i = C̃−i(Π−i)
−1C̃T

−i.379
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We can express Π−i using entries of K−1. Let K−i = [kpq]p,q ̸=i and k−i = (kpi)p ̸=i.380

Let K = K−1, K−i = [kpq]p,q ̸=i, and k−i = (kpi)p ̸=i. We can write v−i = (K−i)
−1k−i381

as v−i = −k−i/kii and (K−i)
−1 = K−i − kiiv−iv

T
−i (see for example [38, Sec. 5.4.2]).382

With K̃−i = (Dv−i
K−iDv−i

)−1 and Dv−i
= diag(v−i), we have K̃−i = k

−1

ii ∆−i383

where ∆−i = [kpqkii/(kipkiq)− 1]p,q ̸=i. Now we have Π−i = k
−1

ii □−i ◦ (∆−i ⊗ Jk).384

The computation of S−i follows subsection 4.1. Since we are only concerned with385

the eigenvectors of S−i, with a little abuse of notation, we redefine Π−i without the386

term k
−1

ii . We describe the overall procedure in Algorithm 5.1.387

Algorithm 5.1 LOOCV Predictive Error

Require: correlation function k; sample (θi)
l
i=1; preprocessing output (□, C̃ = R̃P̃T ).

Input: hyperparameters β.
1: Construct inverse correlation matrix: K← solve(K), where kij ← k(θi,θj ;β).
2: for i in 1, · · · , l do
3: Construct: Π← [Πpq]p,q ̸=i, where Πpq ← δpq□pq, δpq ← kpqkii/(kipkiq)− 1.

4: Construct: S← L̃T L̃, where Π = LLT , L̃← solve(L, C̃T
−i).

5: Truncated EVD: S = V̊ diag(λ̊)V̊T , where λ̊ has length k.

6: Compute singular values: σ ← σ(C̃T
i V̊).

7: Compute squared error: ϵi ←
∑k

j=1 arccos(σj)
2

8: end for
Output: LOOCV predictive error LLOO =

∑l
i=1 ϵi.

5.3. Computational cost. In terms of computation, Algorithm 5.1 is approx-388

imately l repetitions of Algorithm 4.2, so it costs about k3l4 flops per evaluation.389

This means that evaluating the LOOCV error takes about the same time as making l390

predictions. Because such evaluation needs to be repeated until numerical optimization391

converges, hyperparameter training may be a significant part of the overall cost. In392

practice, we recommend setting a very rough convergence threshold: for parameters393

with a range of one, a threshold of 0.01 is sufficient for the length-scale. If the problem394

has multiple parameters, they may be scaled into comparable ranges and share the395

same length-scale. If multiple hyperparameters are to be trained, gradient-based opti-396

mization methods (see section SM3) can be more efficient than just using the LOOCV397

error. To minimize the number of iterations, one may also set a restrictive range and,398

if applicable, a good initial value for the hyperparameters; for example, ±30% of the399

aforementioned rule-of-thumb length-scale, with initial value at the midpoint.400

6. Application in model reduction. In this section, we review the general401

setup of model reduction, and compare the GPS with other methods for PROM.402

6.1. Reduced order modeling. To simplify the narrative, consider a system of403

ordinary differential equations (ODEs) that is first-order, linear and time-invariant,404

with multiple input and output:405

(6.1) Σ :

{
Eẋ = Ax+Bu

y = Cx
406

With system dimension n, input dimension p, and output dimension q, this system407

is defined by constant matrices E,A ∈Mn,n, B ∈Mn,p, and C ∈Mq,n. The state x,408

input u, and output y are all functions of time, with dimension n, p, and q respectively.409
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We assume x(0) = 0; any fixed initial condition x0 can be included in the input as an410

impulse x0δ(t). In general, the ODE system Σ may represent a physical or artificial411

system modeled by a PDE system, which is discretized in space, and linearized around412

a stationary trajectory. The system dimension n typically scales with the size of a413

spatial grid, and for a large-scale problem, usually we have n > 105.414

Projection-based model reduction constructs a reduced-order model (ROM) as:415

(6.2) Σr :

{
Erẋr = Arxr +Bru

yr = Crxr

416

Let V,W ∈ Vk,n be orthonormal bases of k-dimensional subspaces, the reduced system417

matrices are defined as Er = WTEV, Ar = WTAV, Br = WTB, and Cr = CV.418

Therefore we have Er,Ar ∈ Mk,k, Br ∈ Mk,p, and Cr ∈ Mq,k. If the reduced bases419

V and W are the same, this framework is called the Galerkin projection; otherwise,420

it is called the Petrov-Galerkin projection. Usually we would want a reduced system421

dimension k ≤ 50. Because simulation time and model storage scale at least linearly422

with system dimension, they are reduced by several orders of magnitude via ROM.423

6.2. Error measures. To measure the error introduced by a ROM, one choice424

is the L2 state error for a given input. The L2 metric of square-integrable functions425

on the interval [0, T ], discretized into J parts of length δt, can be approximated as:426

(6.3) ∥x− x̂∥2L2
=

∫ T

0

∥x(t)− x̂(t)∥22 dt ≈
J∑

i=1

∥x(ti)− x̂(ti)∥22 δt427

Relative L2 state error is the L2 error of the state of a ROM, divided by the L2 norm428

of the state of the original system. With approximated state x̂ = Vxr, we have:429

(6.4) e(x,xr)L2
=
∥x−Vxr∥L2

∥x∥L2

430

Another error measure is the H2 metric, defined as the largest possible amplitude431

of the output error given any unit-energy input: with ∥y∥L∞ = supt≥0 ∥y(t)∥∞,432

(6.5) ∥Σ− Σr∥H2
= sup

u∈L2

∥y − yr∥L∞

∥u∥L2

433

The H2 error of a ROM is, in a sense, more comprehensive than the L2 state error.434

Relative H2 error is the H2 error divided by the H2 norm of the original system:435

(6.6) e(Σ,Σr)H2 =
∥Σ− Σr∥H2

∥Σ∥H2

436

The H2 norms can be obtained analytically via the controllability Gramian, which437

can be computed by solving the Lyapunov equations [39].438

6.3. Methods for ROM. To compute a reduced basis for the Galerkin projection,439

a widely-used classic method is called the proper orthogonal decomposition (POD),440

originally proposed for turbulent flow analysis by [28]. This method takes a collection of441

system states x(ti) at discrete times {ti}mi=1, called snapshots, which may be obtained442

via simulation or experimental measurements. Let X be the matrix that stacks the443

snapshots as column vectors, then the POD basis V corresponds to the left singular444
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12 R. ZHANG, S. MAK, AND D. DUNSON

vectors of X associated with the largest k singular values. This means that the POD445

basis minimizes the L2 error of snapshot reconstruction, which is an appealing property446

of POD. Besides providing a reduced basis, POD also associates each basis vector with447

the corresponding singular value, which can be used to determine basis dimension k.448

For large-scale systems, the number of snapshots required is far less than the system449

dimension, and usually m = O(103).450

Another class of ROM methods are interpolatory [5], which approximate the451

transfer function of the original system using rational interpolation. The transfer452

function of the system Σ is defined as H(s) = C(sE−A)−1B. Here, H : C 7→Mq,p(C)453

is a complex matrix-valued function of a complex frequency variable. These methods454

interpolate the transfer function at an arbitrary number of points and up to an arbitrary455

number of derivatives along certain tangent directions. Among such methods, the456

iterative rational Krylov algorithm (IRKA) introduced by [20] has seen great success.457

It iteratively searches for an order-k rational function that approximates the transfer458

function, until it satisfies the tangential interpolation conditions. If IRKA converges,459

the converged point locally minimizes the H2 error in the space of order-k rational460

functions. IRKA constructs a ROM in state space via the two-sided Petrov-Galerkin461

projection, that is, the reduced bases V and W are different.462

Besides POD and interpolatory methods, there are other ROM methods such463

as balanced truncation [31], most common in systems and control theory. There are464

effective ROM methods for systems more general than (6.1) as well, such as DEIM [9]465

for nonlinear systems and DMD [42] for black-box systems.466

6.4. Methods for PROM. Our discussion so far assumes that the full model Σ467

in (6.1) is constant. In a more general class of problems, Σ is parametric, such that468

the system matrices E,A,B, and C depend on a set of parameters θ ∈ Θ ⊂ Rd. This469

dependency can be nonlinear in general, and the dimension d of the parameter space470

varies greatly with the problem. There are many methods for PROM, and we refer471

the readers to [8] for a comprehensive review.472

One approach is to construct a single basis that works well for the entire parametric473

set of systems. For example, given local reduced bases (Vi)
l
i=1 obtained for a sample474

of the parameter space, one can concatenate them into a global basis V = [V1 · · ·Vl].475

However, this increases the dimension of the reduced subspace, and therefore the size476

and simulation time of the ROM.477

Another approach is to consider a projection-based ROM method as a mapping478

that associates each parameter point with a reduced subspace. Given local reduced479

subspaces at a parameter sample, one may approximate this subspace-valued mapping480

and predict reduced subspaces at other parameter points. This fits the problem in481

Section 1, and includes subspace interpolation and our GPS method. Compared with482

using a global basis, this keeps the ROM small and often more reliable [3].483

Instead of interpolating subspaces, [36] proposed a method that directly inter-484

polates the reduced models: it first applies a congruence transformation to the local485

reduced models, and then interpolates the model matrices element-wise. We will refer486

to this approach as matrix interpolation. Influenced by this work, [4] proposed a487

method that interpolates the transformed matrices on a relevant matrix manifold, e.g.488

the general linear group, in a procedure analogous to subspace interpolation. We will489

refer to this approach as manifold interpolation.490

An idea bridging the global and local approaches is parameter domain partitioning:491

one can partition the parameter space into small regions and apply a PROM method492

within each. This idea has been adopted in many papers, see e.g. [2, 14].493
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6.5. Comparing PROM methods. Here we compare the GPS with other494

methods in model reduction, in terms of speed, accuracy, and property preservation.495

6.5.1. Speed vs. local bases. Our method is typically much faster than methods496

for computing local reduced bases. Consider the computation of a local POD basis497

given m snapshots at one parameter point. The cost is dominated by a truncated SVD498

of the n-by-m snapshot matrix, which takes O(nmk) time. To compare the costs, take499

the rocket injector example in [29], where n ≈ 105, m = 103, k = 45, l = 30. We have500

(nmk)/(k3l3) ≈ 1.83. Considering the constant factor in truncated SVD, in this case501

our method is about an order of magnitude faster than computing a local POD basis.502

Because the cost of computing snapshots dominates the overall POD procedure, this503

implies a clear advantage in using our method to approximate local POD bases.504

The cost of computing a pair of local IRKA bases is less straightforward to analyze505

[5]. Every iteration needs to solve 2k systems of linear equations, each with a different506

coefficient matrix of order n that cannot be reused across iterations. The number of507

iterations depends on the initial values provided to the algorithm, and the algorithm508

needs to be restarted if it does not converge after a predefined maximum number of509

iterations. Depending on the problem, IRKA can take longer than the POD procedure.510

6.5.2. Speed vs. interpolatory methods. Subspace interpolation [3] uses the511

Riemannian exponential and logarithm of the Grassmann manifold, both involving a512

thin SVD of an n-by-k matrix, which scales with O(nk2). Since its prediction does not513

have a special factorization structure (as the GPS does), it takes another 2nk2+kTmult514

flops to compute a reduced matrix, where Tmult denotes the cost of a matrix-vector515

multiplication. The prediction cost can be greatly reduced if the problem has only one516

parameter and one uses linear interpolation [43]. In general, the prediction scales with517

n and is slow for large-scale problems.518

Matrix interpolation [36] and manifold interpolation [4] directly interpolate local519

ROMs so their prediction costs do not depend on n, and therefore they are considered520

as suitable for online computation.521

In comparison, our algorithm turns the truncated EVD of the order-n matrix Σ522

into one of the order-kl matrix S, and the prediction cost is instead dominated by the523

construction of S, which is carried out efficiently via matrix decomposition and linear524

solvers. Thus, the prediction cost also does not depend on n.525

Table 1 compares the computational costs of these methods in detail. This table526

does not include the generation of reduced bases at a sample of the parameter space, a527

step required by all these methods. Generating a reduced basis can be computationally528

expensive depending on the ROM method in use, which limits the sample size l.529

6.5.3. Accuracy. All three interpolation methods lack a clear rule for model530

selection, i.e. selecting the reference point, other interpolation points, and the interpo-531

lation scheme. This often leads to model misspecification which undermines accuracy.532

Moreover, interpolation on tangent spaces of Riemannian manifolds, such as subspace533

and manifold interpolation, are extrinsic to the underlying manifolds. As explained in534

section SM6, when points further away from the reference point are used, the true535

mapping becomes more distorted on the tangent space and thus harder to approximate.536

A similar concern is addressed in [50] Sec. 3. Therefore, these methods cannot use537

more than a handful of points at a time, and have limited potential to extend to538

higher-dimensional parameter spaces.539

Our method has specific model selection criteria which make it data efficient, so540

a small sample size is enough to give accurate results. Besides, the GPS is intrinsic541
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Table 1
Interpolatory methods for PROM: flop counts of the dominant terms.

Preprocess Subspace ROM Training Reference

GPS 5nk2l2 k3l3 2k3l2 k3l4 this paper
Subspace-Int 10nk2l2 8nk2 2nk2 � [3]
Matrix-Int 6nk2l2 - 2k2l � [36]
Manifold-Int nk2l2 - O(k3l)* � [4]

* Coefficient usually on the scale of 50 due to matrix logarithm / exponential,
which can be numerically unstable [23].

� Optimal choice of reference ROM and interpolation scheme is an open problem.

to the Grassmann manifold, so it does not incur extra approximation error and its542

accuracy improves with sample size.543

6.5.4. Preservation of properties. Another important issue in ROM is the544

preservation of system properties, such as stability, passivity, and contractivity. Al-545

though stability is not guaranteed for the reduced models generated by our method,546

from Section 7 we will see that, it is still observed in most cases, simply because our547

method can accurately approximate the subspace map of local ROMs.548

7. Numerical experiments.549

7.1. Visualization of GP subspace prediction. The simplest type of subspace-550

valued functions have the form f : R 7→ G1,2, which maps a real number to a551

one-dimensional linear subspace in the plane. The Grassmann manifold G1,2 can552

be identified as the unit circle, treating antipodal points as equivalent (Figure 1a).553

Therefore, such a function f can be plotted on the surface of a cylinder (Figure 1b),554

which helps us visualize the posterior process of the GPS model.555

Specifically, let f be a covering map such that f(θ) is the subspace with angle556

α = θ mod π. This can be plotted as a double helix on the cylinder. To approximate557

this function with the proposed GPS model, suppose we observe sample points θi = ciπ,558

where ci are seven equal-distanced points between 0.2 and 1.8. For the correlation559

function k, we use the SE kernel, and set the length-scale β by minimizing the LOOCV560

predictive error. In this example, β = 2.8 ≈ 0.9π. To visualize predictive uncertainty,561

we plot the 95% posterior predictive intervals (PI) from Theorem 3.1. We also include562

results from subspace interpolation for comparison. As suggested by the authors of [3],563

for every target parameter we use the nearest nr sampled points for the interpolation564

(where nr = 3 and 4 in Figure 1), among which the nearest sampled point is used as565

the reference point. We use Lagrange interpolation for the tangent vectors.566

We see that, with only seven data points, the predictive mean function of GPS567

closely tracks the true function within the range of sampled parameter points. Fur-568

thermore, the uncertainties from our model also well-cover the truth: the posterior569

predictive intervals contain the true subspace values for all θ ∈ [0, 2π]. Note that570

as the target point moves away from the sample points, the predictive distribution571

degenerates to the prior, the uniform distribution on G1,2. Subspace interpolation,572

on the other hand, yields noticeably poorer predictions compared to GPS for both573

nr = 3 and nr = 4. As a deterministic interpolation approach, it also does not provide574

a quantification of interpolation uncertainty. This shows that, for this example, the575

proposed GPS model uses sample data more effectively to yield better predictions576
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Fig. 1. Visualization of the GPS model. (a) Every 1d subspace in the plane can be uniquely
identified by either a pair of antipodal points on a circle, or an angle α ∈ [0, π). (b) Posterior process
of the GPS model on the surface of a cylinder. (c) Same as (b) but as a 2d plot. True function (black
line), data (black points), GPS predictive mean (blue curve), 95% predictive interval (red shade).
Orange curves are predictions from subspace interpolation: nr = 3 (solid), nr = 4 (dotted).

with uncertainty quantification.577

7.2. Anemometer: approximating local POD bases. Here we consider578

a benchmark problem for PROM known as the anemometer [32], a type of micro-579

electromechanical system (MEMS) device that measures the flow speed of its sur-580

roundings. Such a device needs to be calibrated under different flow conditions for581

its temperature response. However, an accurate representation of the device needs to582

resolve the coupled fluid and thermodynamics, and can be very time-consuming to583

compute. It is therefore useful to apply PROM methods.584

Specifically, a convection-diffusion equation is discretized into a linear ODE system585

as (6.1), with system dimension n = 29, 008 and input and output dimensions p = q = 1.586

The matrix A depends on one parameter θ ∈ [0, 1] representing fluid velocity and is587

not symmetric in general, while E,B,C are constants. The input map B represents a588

heat source, and the output map C gives the temperature difference of two nodes.589

To build a parametric reduced-order model (PROM), we first construct local590

POD bases at a sample of the parameter space, and then use the mean prediction591

of GPS to estimate the reduced subspaces at other parameter points. As before, we592

use the SE kernel, with a length-scale that minimizes the LOOCV predictive error.593

The subspace-valued mappings being approximated in this problem have very high594

dimensional codomains: because the dimension of Gk,n is k(n− k), with k = 20 and595

k = 40, the manifold dimensions here are 579,760 and 1,158,720 respectively.596

For comparison, we also estimate the reduced subspaces using subspace interpola-597

tion, with the same setup as in the visualization example. For manifold interpolation598

[4], we use the same setup for subspace interpolation. For matrix interpolation [36], we599

use the nearest sampled point as the reference point and, as suggested by the authors,600

we use linear interpolation for the reduced system matrices. We include results for601
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Fig. 2. Anemometer, relative H2 error: (a) k = 20; (b) k = 40. Training data shown as points.
The H2 error curve of local POD is wiggly because it minimizes the L2 state error.

local POD bases as a reference level we would like to match.602

Figure 2a shows the relative H2 errors using these methods, with subspace di-603

mension k = 20. Here we use a sample of seven equal-distanced points from 0 to 1.604

GPS uses a length-scale β = 0.36, selected via LOOCV. The results for subspace and605

manifold interpolation use nr = 3; the results are similar for nr = 4 or 5. We see that606

the three existing interpolation methods perform similarly, and the errors tend to607

blow up in between sample points. In comparison, the proposed GPS model yields608

much lower errors: the relative H2 error is comparable to that for the local POD (the609

reference level). Note that the goal here is not to perfectly match the error curve of610

local POD, but to keep the error as low as possible; in this sense, the GPS model611

appears to provide noticeable improvements over existing methods.612

Figure 2b shows the results for k = 40. Here we use a sample of 11 equal-distanced613

points from 0 to 1. GPS uses a length-scale β = 0.25. Setup for the interpolation614

methods are unchanged. We see that, even with the increased sample size, all three615

interpolation methods fail to keep a low error level. While matrix interpolation616

occasionally does better than the other two, this is probably not generalizable due to617

the linear interpolation scheme. In comparison, our method again yields much lower618

errors, and maintains a similar level of accuracy as the local POD.619

Figure 3 shows the relative L2 state errors using these methods. Local POD is620

omitted from these plots since its relative L2 state error is practically zero. The error621

curves of the three interpolation methods are qualitatively similar, with subspace622

interpolation better than manifold interpolation, which is in turn better than matrix623

interpolation. In comparison, the GPS again yields much lower errors: for k = 20, the624

average error is about two orders of magnitude lower than that of subspace interpolation;625

for k = 40, it is about three orders of magnitude lower. This improvement can be626

attributed to the more flexible and intrinsic nature of the GPS model, which allows627

for more effective use of sample data.628

Measured computation time for this problem is provided in section SM5.629
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Fig. 3. Anemometer, relative L2 state error: (a) k = 20; (b) k = 40.

7.3. Microthruster: approximating local IRKA bases. Here we consider630

another benchmark problem for PROM known as the microthruster [34], an array of631

solid propellant microthrusters on a chip. To find an optimal design of array geometry632

and driving circuit, many simulations need to be carried out, which can be prohibitive633

with large-scale models. The use of PROM is therefore justified.634

Specifically, the numerical model discretizes a heat transfer equation into a linear635

ODE system as (6.1), with system dimension n = 4, 257, input dimension p = 1, and636

output dimension q = 7. The input B represents the electrical circuit, and the output637

C gives the temperature at seven nodes. The convection boundary conditions are638

parameterized into three parameters, each within the range [1, 104], and affect the639

symmetric system matrix A on the diagonal. To simplify comparison, we fix the three640

parameters to always be the same, and take the base-10 logarithm of their original641

values, so we have one parameter θ ∈ [0, 4].642

For this problem, we use IRKA to construct reduced bases at the sample points.643

Because IRKA uses two different bases V and W, for a parametric system this means644

that each parameter is associated with a pair of subspaces, and we may construct645

a PROM by approximating a mapping for the form (V,W)(θ). Since our proposed646

method only handles mappings that output one subspace, we proceed by modeling647

the pair of subspaces separately. This inevitably leaves some information in the data648

unused, and there may be methods that can improve upon this work-around. Setup649

for the interpolation methods are the same as in the anemometer example.650

Figure 4 shows the relativeH2 errors using these methods, with subspace dimension651

k = 10. Here we use a sample of six points: θ = 0.17, 0.94, 1.7, 2.47, 3.23, 4. GPS uses a652

length-scale β = 1.4 for basis V, and β = 2.56 for basis W. The result for subspace653

interpolation uses nr = 3; the other values of nr give results with larger errors. We654

see that, while subspace interpolation matches the error curve of local IRKA (the655

reference level) quite well in some parts of the parameter space, its error blows up in656

an unsmooth region in between. These errors are noticeably larger for manifold and657

matrix interpolation, so we cropped them out of the plot. To contrast, the proposed658

GPS method instead tracks the local IRKA error curve smoothly across the parameter659

This manuscript is for review purposes only.



18 R. ZHANG, S. MAK, AND D. DUNSON

Fig. 4. Microthruster, relative H2 error. k = 10. Training data are shown as points. The error
curve of local IRKA is more level than local POD in Figure 2 because it minimizes the H2 error.

space, yielding much lower errors than existing interpolation methods.660

For this problem, many of the ROMs generated by manifold interpolation are661

complex-valued, due to the matrix logarithm that computes the tangent vectors.662

Moreover, many ROMs generated by manifold and matrix interpolation are unstable,663

which means that the H2 errors are infinite. Although our method and subspace664

interpolation do not guarantee the stability of reduced models, because they seem to665

accurately approximate the reduced subspaces, unstable ROMs appear less often. We666

discuss issues specific to approximating IRKA bases in section SM7.667

7.4. Anemometer: 3-parameter case. To compare the methods in a PROM668

problem with multiple parameters, here we consider the three-parameter version669

of the anemometer [32]. The parameters include specific heat c ∈ [0, 1], thermal670

conductivity κ ∈ [1, 2], and fluid velocity v ∈ [0.1, 2]. The system matrices have the671

form E = Es+ cEf and A = Ad,s+κAd,f + cvAc, while B and C are constant. Other672

aspects of the problem are unchanged.673

To sample the parameter space, we first use the maximin Latin hypercube sampling674

(LHS) to obtain a training set, and then use the sequential maximin design to obtain675

a testing set, see e.g. [17, Ch. 4]. Maximin LHS generates a random set of points that676

are spread out in the parameter space and well-distanced from each other. Sequential677

maximin design generates another with similar properties, but also well-distanced from678

the given training set.679

The setup for the PROM methods remain unchanged from the 1-parameter case,680

except the interpolation scheme for the three interpolation methods. Since Lagrange681

and linear interpolations do not apply to multiple parameters, we use the radial682

basis function (RBF) method described in [2, p. 278]. Specifically, a multiquadric683

RBF is applied entrywise to interpolate the tangent vectors in subspace and manifold684

interpolation as well as the matrices in matrix interpolation. For subspace interpolation,685

horizontal projection is applied to maintain validity of the interpolated tangent vector.686

Table 2 compares the mean relative H2-errors, with training sample sizes l = 14, 18,687

or 21, and testing sample size 100. For each training sample, GPS uses a length-scale688

β = 1.05, 0.85, or 0.7, respectively. Notice that, with subspace dimension k = 20, the689

mean relative H2-error of local POD is about 5.5%, which is not particularly low. It690
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Table 2
Mean relative H2-error for 3-parameter anemometer, k = 20, varying sample size.

l = 14 l = 18 l = 21

local POD 5.55% (1)* 5.46% (1) 5.69% (1)
GPS 6.49% (1.169) 5.80% (1.062) 5.14% (0.903)
Subspace-Int 8.34% (1.503) 7.38% (1.352) 6.19% (1.148)
Manifold-Int 16.6% (2.986) 13.8% (2.524) 12.7% (2.232)
Matrix-Int 49.7% (8.962) 44.2% (8.104) 45.5% (8.003)

* Relative errors to local POD are shown in parentheses.

Table 3
Mean relative L2 state error for 3-parameter anemometer, k = 20, varying sample size.

l = 14 l = 18 l = 21

local POD 7.98e-13 (0)* 8.36e-13 (0) 8.77e-13 (0)
GPS 1.24e-2 (0.437) 6.42e-3 (0.273) 5.55e-3 (0.250)
Subspace-Int 2.85e-2 (1) 2.35e-2 (1) 2.22e-2 (1)

* Relative errors to subspace interpolation are shown in parentheses.

is clear that our method is able to maintain the error level of local POD with as few691

as 18 training points. In comparison, the error increase in subspace interpolation is692

several times higher in all cases. Manifold interpolation is much less accurate than the693

previous two methods, while matrix interpolation is the least accurate.694

Similarly, Table 3 compares the mean relative L2 state errors. Manifold and matrix695

interpolation are excluded because they cannot reconstruct the state vector. Since696

local POD minimizes the L2 state error by construction, its error level is practically697

zero. With l = 14, our method has a relative error of about 1%, less than half that of698

subspace interpolation. This ratio drops as sample size gets larger. Overall, the GPS699

method is much more data efficient than subspace interpolation in this multi-parameter700

setting, again owing to its flexibility and intrinsic nature.701

Measured computation time for this problem is provided in section SM5.702

8. Concluding remarks. In this paper we propose a new GP model for proba-703

bilistic approximation of subspace-valued functions. A key application of this model704

is parametric reduced order modeling. We show that the GPS model gives accurate705

predictions even with small sample sizes, and because its prediction cost does not706

depend on system dimension n, it is typically faster than subspace interpolation in707

PROM problems. In the following, we discuss several topics on the use of the GPS.708

Prediction speed. Since the prediction cost of our method is cubic in subspace709

dimension k and sample size l, it is best to keep them small for fast computation. To710

keep k small, one needs to choose a ROM method that is best suited for the relevant711

error measure. For example, POD is optimal in L2 error of snapshot reconstruction,712

while IRKA is locally optimal in H2 error. To keep l small, one needs to choose an713

efficient method for parameter sampling. One may consider adaptive sampling and714

sparse grids [8], or experimental design methods in statistics [41, 17].715

Handling higher-dimensional parameter spaces. When parameter dimension d is716

large, even with the l = 10d rule of thumb for GP models [27], l can quickly become717
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very large. Fortunately, there are some methods to cap the l3 scaling. One approach718

is to use local approximate GP [18], where for each target point only a subsample719

of mostly nearby points are used in the prediction. Another approach is covariance720

tapering [15] or compactly supported kernels [24], where the kernel becomes zero721

beyond a certain distance, so that the covariance matrix is sparse and sparse matrix722

algorithms can be used to speed up computation. Both are in a similar spirit to723

parameter domain partitioning.724

Prediction uncertainty. The uncertainty in subspace predictions, quantified by the725

eigenvalues of Σ, serves as a diagnostic tool for prediction confidence. It can also guide726

parameter sampling: one can put extra sample points in regions with high prediction727

uncertainty. This could lead to efficient adaptive sampling methods [17].728

Variation of subspace dimension. In some cases it can be desirable to let k vary729

with the parameters, e.g. to attain a fixed ROM accuracy. Since the Grassmann730

manifold requires a fixed k, it acts as a Procrustean bed and limits all methods based731

on it, including the GPS. We recommend setting k to the highest value in the sample.732
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SUPPLEMENTARY MATERIALS: GAUSSIAN PROCESS SUBSPACE1

PREDICTION2

FOR MODEL REDUCTION∗3

RUDA ZHANG† , SIMON MAK‡ , AND DAVID DUNSON§4

SM1. Proof of Theorem 3.1. We see that the posterior p(m|X) in (3.4) takes5

positive values in
∏l

i=1[xi], where [xi] = {vec(XiA) : A ∈ GLk}. Because GLk is a6

full-measure subset of Mk,k, we can replace [xi] with {vec(XiA) : A ∈Mk,k} without7

changing the posterior. Note that the latter equals Xk
i =

∏k
j=1{Xic : c ∈ Rk}, so the8

support of the posterior can be written as: S =
∏l

i=1 X
k
i .9

The predictive distribution of m∗ given observations X is obtained by integrating10

the conditional distribution (3.2) over the posterior distribution (3.4), that is:11

⊛ := p(m∗|X) =
∫
S

p(m∗|m) p(m|X) dm12

Every m ∈ S can be written as m = (mi)
l
i=1, where mi = vec(XiAi), Ai ∈ Mk,k.13

Let m:ji and a:ji be the j-th column of Mi and Ai respectively, then m:ji = Xia:ji.14

Because Xi has orthonormal columns, we have:15

(SM1.1) dm =

l∏
i=1

dmi =

l∏
i=1

k∏
j=1

dm:ji =

l∏
i=1

k∏
j=1

d(Xia:ji) =

l∏
i=1

k∏
j=1

da:ji = da16

Here, a = vec(A) ∈ Rkkl and A is the k× k× l array with frontal slices Ai. Replacing17

the integration domain S with Rkkl, we have:18

⊛ ∝
∫
Rkkl

p(m∗|m) p(m|X)da19

Let N(x;µ,Σ) denote the value at x of the Gaussian PDF with mean µ and20

covariance matrix Σ. From (3.2), we have:21

p(m∗|m) = Nnk(m∗;K12K
−1
22 m, Ink −K12K

−1
22 K

T
12)22

∝ exp

(
−1

2
(m∗ −K12K

−1
22 m)TS†(m∗ −K12K

−1
22 m)

)
(SM1.2)23

24

Here, S = Ink −K12K
−1
22 K

T
12 and † denotes the Moore–Penrose inverse. In particular,25

this allows S to be singular. By computation rules of the Kronecker product:26

S = Ink − (kT
l ⊗ Ink)(Kl ⊗ Ink)

−1(kT
l ⊗ Ink)

T
27

= Ink − (kT
l K

−1
l kl)⊗ Ink = (1− kT

l K
−1
l kl)Ink = ε2Ink(SM1.3)2829
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We denote noise variance ε2 = 1− kT
l K

−1
l kl. Note that ε2 ∈ [0, 1], and ε2 = 0 if and30

only if θ∗ ∈ (θi)
l
i=1. In the following, we assume ε2 ̸= 0. Since m = (vec(XiAi))

l
i=1,31

by computation rules of the Kronecker product, we can write K12K
−1
22 m as:32

(kT
l ⊗ Ink)(Kl ⊗ Ink)

−1m = ((kT
l K

−1
l )⊗ Ink)m =

l∑
i=1

(kT
l K

−1
l ei)vec(XiAi)33

Since vec() is a linear operator, we have34

K12K
−1
22 m = vec

(
l∑

i=1

(kT
l K

−1
l ei)XiAi

)
= vec

(
l∑

i=1

Xi(k
T
l K

−1
l ei)IkAi

)
35

Let A(13×2) be the matricization of A by combining the matrices Ai by rows. Recall36

that X combines Xi by columns, we have37

K12K
−1
22 m = vec

(
X(diag(K−1

l kl)⊗ Ik)A(13×2)

)
= vec

(
X̃A(13×2)

)
38

Here, X̃ = X(diag(K−1
l kl)⊗ Ik). By the “vec trick” of the Kronecker product, we have39

(SM1.4) K12K
−1
22 m = (Ik ⊗ X̃)vec(A(13×2)) = (Ik ⊗ X̃)a(13×2)40

Here a(13×2) = vec(A(13×2)). Substituting (SM1.3) and (SM1.4) into (SM1.2), we have41

(SM1.5) p(m∗|m) ∝ exp

(
−1

2
ε−2∥m∗ − (Ik ⊗ X̃)a(13×2)∥2

)
42

From (3.4), p(m|X) ∝ exp{− 1
2m

T (K−1
l ⊗ Ink)m}, where m = (vec(XiAi))

l
i=1.43

Note that matrix inverse and the Kronecker product commute. Let kij = [K−1
l ]ij .44

Expand the Kronecker product and use properties of the trace, we have45

mT (K−1
l ⊗ Ink)m46

=

l∑
i=1

l∑
j=1

kijvec(XiAi)
Tvec(XjAj) =

l∑
i=1

l∑
j=1

kijtr
(
(XiAi)

T (XjAj)
)

47

= tr

 l∑
i=1

l∑
j=1

kij(XiAi)
T (XjAj)

 = tr

 l∑
i=1

l∑
j=1

(XiAi)
T (kijIn)(XjAj)

48

49

Let (XiAi)
l
i=1 be the matrix combining XiAi by rows. Let X = diag(Xi)

l
i=1, then50

XA(13×2) = (XiAi)
l
i=1. Reconstruct a Kronecker product, we have51

mT (K−1
l ⊗ Ink)m = tr

(
[(XiAi)

l
i=1]

T (K−1
l ⊗ In)[(XjAj)

l
j=1]

)
52

= tr
(
AT

(13×2)X
T (K−1

l ⊗ In)XA(13×2)

)
53
54

Let □̆ = XT (K−1
l ⊗ In)X. With the “vec trick”, we have55

mT (K−1
l ⊗ Ink)m = tr

(
AT

(13×2) □̆ A(13×2)

)
= vec(A(13×2))

Tvec(□̆ A(13×2))56

= vec(A(13×2))
T (Ik ⊗ □̆) vec(A(13×2)) = aT(13×2)(Ik ⊗ □̆)a(13×2)(SM1.6)57

58
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So the posterior distribution has the form:59

(SM1.7) p(m|X) ∝ exp{−1

2
aT(13×2)(Ik ⊗ □̆)a(13×2)}60

Substitute (SM1.5) and (SM1.7) into ⊛, we have:61

⊛ ∝
∫
Rkkl

exp

(
−1

2

[
ε−2∥m∗ − (Ik ⊗ X̃)a(13×2)∥2 + aT(13×2)(Ik ⊗ □̆)a(13×2)

])
da62

Note that we can expand the inner product to have:63

∥m∗−(Ik⊗X̃)a(13×2)∥2 = ∥m∗∥2−2mT
∗ (Ik⊗X̃)a(13×2)+aT(13×2)(Ik⊗(X̃

T X̃))a(13×2)64

Denote Σ−1
c = Ik ⊗ (ε−2X̃T X̃ + □̆) and mT

c Σ
−1
c = ε−2mT

∗ (Ik ⊗ X̃). Because da =65

da(13×2), we have66

⊛ ∝
∫
Rkkl

exp

(
−1

2
ε−2∥m∗∥2 +mT

c Σ
−1
c a(13×2) −

1

2
aT(13×2)Σ

−1
c a(13×2)

)
da(13×2)67

= det(2πΣc)
1/2 exp

(
−1

2
ε−2∥m∗∥2 +

1

2
mT

c Σ
−1
c mc

)
68
69

With the definitions of Σ−1
c and mT

c Σ
−1
c , we have70

ε−2∥m∗∥2 −mT
c Σ

−1
c mc = ε−2∥m∗∥2 − (mT

c Σ
−1
c )(Σ−1

c )−1(mT
c Σ

−1
c )T71

=ε−2∥m∗∥2 − ε−4mT
∗ (Ik ⊗ X̃)(Ik ⊗ (ε−2X̃T X̃+ □̆))−1(Ik ⊗ X̃)Tm∗72

=mT
∗

(
ε−2Ink − ε−4Ik ⊗ (X̃(ε−2X̃T X̃+ □̆)−1X̃T )

)
m∗ = mT

∗

(
Ik ⊗Σ†

)
m∗73

74

Here we define75

(SM1.8) Σ† = ε−2In − ε−4X̃(ε−2X̃T X̃+ □̆)−1X̃T
76

Because Σc does not depend on m∗ but ⊛ = p(m∗|X), we have77

(SM1.9) ⊛ ∝ exp

(
−1

2
mT

∗

(
Ik ⊗Σ†

)
m∗

)
78

This means that the predictive distribution is79

(SM1.10) ⊛ := p(m∗|X) = Nnk(m∗; 0, Ik ⊗Σ)80

Now we simplify Σ. Recall that X̃ = X(diag(K−1
l kl)⊗ Ik). Let v = K−1

l kl. Using81

the definition and properties of the Kronecker product, we have the following:82

X̃ = X(diag(v)⊗ Ik) = (vT ⊗ In)X83

X̃T X̃ = XT (vT ⊗ In)
T (vT ⊗ In)X = XT [(vvT )⊗ In)]X8485

Recall that □̆ = XT (K−1
l ⊗ In)X, from (SM1.8) and the above, we have86

Σ† = ε−2In − ε−4X̃{ε−2XT [(vvT )⊗ In)]X+ XT (K−1
l ⊗ In)X}−1X̃T

87

= ε−2In − ε−4X̃{XT [(ε−2vvT +K−1
l )⊗ In)]X}−1X̃T

8889
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LetDv = diag(v), then X̃ = X(Dv⊗Ik). For simplicity we assume v has no zero entries,90

which is almost always true, so that Dv is invertible. Since X(D−1
v ⊗Ik) = (D−1

v ⊗In)X,91

Σ† = ε−2In − ε−4X(Dv ⊗ Ik){XT [(ε−2vvT +K−1
l )⊗ In)]X}−1(Dv ⊗ Ik)X

T
92

= ε−2In − ε−4X{(Dv ⊗ Ik)
−1XT [(ε−2vvT +K−1

l )⊗ In)]X(Dv ⊗ Ik)
−1}−1XT

93

= ε−2In − ε−4X{XT (D−1
v ⊗ In)[(ε

−2vvT +K−1
l )⊗ In)](D

−1
v ⊗ In)X}−1XT

94

= ε−2In − ε−4X{XT [(ε−2D−1
v vvTD−1

v +D−1
v K−1

l D−1
v )⊗ In)]X}−1XT

95

= ε−2In − ε−4X{XT [(ε−21l1
T
l +D−1

v K−1
l D−1

v )⊗ In)]X}−1XT
9697

Define Ω = ε−21l1
T
l +D−1

v K−1
l D−1

v , then we have98

(SM1.11) Σ† = ε−2In − ε−4X[XT (Ω⊗ In)X]−1XT
99

For now, let us assume Σ is invertible, then we can apply the Woodbury identity:100

(A+CBCT )−1 = A−1 −A−1C(B−1 +CTA−1C)−1CTA−1
101

where we substitute A = ε−2In, B = −[XT (Ω⊗ In)X]−1, and C = ε−2X. This gives:102

Σ = ε2In −X[−XT (Ω⊗ In)X+ ε−2XTX]−1XT
103

We note that generalizations of the Woodbury identity to the Moore–Penrose inverse104

usually do not have a simple formula. Since X = (1T
l ⊗ In)X, we have:105

XTX = XT (1T
l ⊗ In)

T (1T
l ⊗ In)X = XT [(1l1

T
l )⊗ In]X106

Let K̃l = (DvKlDv)
−1, then Ω = ε−21l1

T
l + K̃l. We have:107

Σ = ε2In −X[−XT (Ω⊗ In)X+ ε−2XT [(1l1
T
l )⊗ In]X]−1XT

108

= ε2In +X{XT [(Ω− ε−21l1
T
l )⊗ In]X}−1XT

109

= ε2In +X[XT (K̃l ⊗ In)X]−1XT(SM1.12)110111

Here the second term is positive semi-definite, so the overall matrix is nonsingular.112

Applying the Woodbury identity again we can verify that the inverse of (SM1.12)113

matches (SM1.11), therefore Σ is indeed invertible.114

With (SM1.10) and (SM1.12), we complete the proof.115

SM2. Joint distributions and random functions on Grassmann manifold.116

In the main text we focus on point predictions on the Grassmann manifold, which is117

enough for PROM purposes. But more generally, our GP model induces a family of joint118

distributions on Grassmann manifolds, and can be used to generate random subspace-119

valued functions. Neither of these problems have been explored in the literature.120

From section 3, we see that for any finite collection of parameter points θ = (θi)
l
i=1,121

our GP model gives a collection of random points on the Grassmann manifold Mi =122

span(vec−1(f(θi))), whose marginal distributions are uniform: Mi ∼ Uniform(Gk,n).123

For each i ∈ {2, · · · , l}, let Σ≤i be defined by θ≤i = (θj)
i
j=1 and M<i = (Mj)

i−1
j=1 as in124

(3.5). Then we have conditional distributions Mi|M<i ∼ MACG(Σ≤i). Combining the125

marginal and conditional distributions, we have a joint distribution on the Grassmann126

manifold, parameterized by θ:127

(SM2.1) (Mi)
l
i=1 ∼ Uniform(Gk,n)

l∏
i=2

MACG(Σ≤i)128
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GPS can be used to generate random subspace-valued functions. Suppose that θ129

is a sample grid to evaluate the random function, then we can use (SM2.1) to generate130

a sample path sequentially. The method to sample MACG(Σ), including the uniform131

distribution, is implied in subsection 2.2, which requires Σ1/2. If we compute the132

EVD of Σ as in section 4, then we have Σ1/2 = V diag(
√
σ2
i + ε2)ri=1V

T + εIn. We133

summarize the overall sampling procedure in Algorithm SM2.1.134

Algorithm SM2.1 GPS: Sampling a Random Subspace-valued Function

Require: correlation function k(·, ·).
Input: sample grid (θi)

l
i=1.

1: Generate random matrix: Z ∈Mn,k, zij ∼ N(0, 1).
2: Orthonormalization: X1 ← π(Z).
3: for i in 2, · · · , l do
4: Generate random matrix: Z ∈Mn,k, zij ∼ N(0, 1).
5: Run Algorithms 4.1 and 4.2 with arguments X<i and (θ<i,θi, r).

6: Matrix multiplication: M← V diag(
√
λ̊+ ε2 − ε)VTZ+ εZ

7: Orthonormalization: Xi ← π(M).
8: end for

Output: Stiefel representations of subspaces (Xi)
l
i=1.

Note: Projection π(M) = UWT , where M = U diag(σ)WT is a thin SVD.

SM3. Gradient of LOOCV predictive error. The gradient of the LOOCV135

predictive error can also be computed. Denote di = dg(Xi,V−i) and let ∂ denote the136

partial derivative with respect to a scalar hyperparameter. With (5.3) and chain rule:137

(SM3.1) ∂LLOO =

l∑
i=1

∂d2i = −2
l∑

i=1

k∑
j=1

(arccosσj)(1− σ2
j )

−1/2∂σj138

Here, σj = σj(X
T
i V−i) = σj(C̃

T
i V̊−i). Let C̃

T
i V̊−i = V̂ diag(σ)ŴT be a thin SVD.139

Using the derivative of a singular value, see for example [SM3, p. 170], we have:140

(SM3.2) ∂σj = v̂T
j (C̃

T
i ∂V̊)ŵj = v̂T

j C̃
T
i (∂V̊)ŵj141

Recall that V̊ consists of the top-k eigenvectors of S−i. Let (̊λp, v̊p) be the p-th142

eigenpair of S−i, p = 1, · · · , k. Using the derivative of an eigenvector of a symmetric143

matrix, see for example [SM2, Thm 8.9], we have:144

(SM3.3) ∂v̊p = (̊λpI− S−i)
†(∂S−i)̊vp145

Let S−i = Q̊diag(λ̊)Q̊T be an EVD, then we have (̊λpI − S−i)
† = V̊ diag{(̊λp −146

λ̊q)
−1}rq=1V̊

T . Recall that S−i = C̃−i(Π−i)
−1C̃T

−i, we have:147

(SM3.4) ∂S−i = −C̃−i(Π−i)
−1(∂Π−i)(Π−i)

−1C̃T
−i148

Recall that Π−i = □−i ◦ (∆−i ⊗ Jk), ∆−i = [kpqkii/(kipkiq)− 1]p,q ̸=i, and K = K−1,149

we have:150

∂Π−i = □−i ◦ [(∂∆−i)⊗ Jk]151

∂[∆−i]pq = ([∆−i]pq + 1)(k
−1

pq ∂kpq + k
−1

ii ∂kii − k
−1

ip ∂kip − k
−1

iq ∂kiq)(SM3.5)152

∂kpq = [∂K−1]pq = [−K−1(∂K)K−1]pq153154
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Combining (SM3.1)–(SM3.5), we can compute the partial derivative ∂LLOO of the155

LOOCV predictive error with respect to any hyperparameter, as long as we can156

compute the partial derivative ∂k of the correlation function. For the SE kernel in (5.1)157

for example, ∂k/∂βi = (θi − θ′i)
2β−3

i k. We omit a formal algorithm for the gradient158

computation, since it is straightforward given these equations.159

We point out one way to speed up the evaluation of (SM3.3) and (SM3.4). Because160

the eigenvalues of S−i decline rapidly, we have161

(SM3.6) (̊λpI− S−i)
† ≈ V̊ diag{(̊λp − λ̊q)

−1}τq=1V̊
T + λ̊−1

p (I− V̊V̊T )162

This approximation is accurate for any p ∈ {1, · · · , k}, as long as τ − k is reasonably163

large; for example, we can set τ = 2k. To compute the approximation we only need the164

top τ eigenpairs of S−i. Since r ≈ kl > 2k, the truncated EVD can be substantially165

faster than a full EVD. Algorithm SM3.1 gives an efficient procedure to compute ∂v̊p166

approximately given v̊p and ∂Π−i.167

Algorithm SM3.1 Approximate Computation of Derivative of an Eigenvector

Note: This procedure evaluates ∂v̊p via (SM3.3) and (SM3.4) given (̊vp, ∂Π−i).

Require: (L, L̃, V̊, λ̊) from Algorithm 5.1.

1: v← solve(LT , L̃v̊p)
2: v← solve(L, (∂Π−i)v)

3: u← −V̊T (L̃v)

4: w← diag
{
(̊λp − λ̊q)

−1 − λ̊−1
p

}τ

q=1

5: ∂v̊p ← V̊w + λ̊−1
p v

If the gradient is computed along with the LOOCV error, the additional cost is168

dominated by (1) the extended truncated EVD of S−i for l times and (2) the evaluation169

of Algorithm SM3.1 for kl times. Since the additional cost of truncated EVD takes170

about O(k2l2(τ − k)) flops, with τ = 2k, part (1) takes about O(k3l3) flops. Since171

Algorithm SM3.1 takes about 12k2l2 flops, part (2) takes about 12k3l3 flops. The172

overall additional cost is about 12k3l3 +O(k3l3) flops per gradient evaluation, where173

the coefficient of the second term is determined by the truncated EVD algorithm.174

Compared with the k3l4 flops for LOOCV error evaluation, the additional cost is at a175

similar level, depending on l.176

SM4. Other model selection criteria. There are other model selection criteria177

for GP models in general. One popular possibility is to choose the hyperparameters to178

maximize the marginal likelihood with the GP integrated out. However, this approach179

is less robust to model and prior misspecification than CV. Another useful criteria is180

the LOOCV predictive probability density. We derived the analytical forms of both181

criteria for our model, and tried them for the numerical examples in this paper. In182

all cases, the marginal likelihood prefers infinite length-scales, inducing a singular183

covariance matrix. While the LOOCV predictive probability density can select a good184

length-scale for the visualization problem in subsection 7.1, it also prefers infinite185

length-scales in other problems, probably because n≫ k. We explain such behavior in186

this section.187

The marginal likelihood of data is defined as the likelihood of data integrated188

over the prior. Recall that x = (xi)
l
i=1, xi = vec(Xi), Xi ∈ Vk,n, m = (mi)

l
i=1, and189

mi ∈ Rnk. Let M = (Mi)
l
i=1 and Mi = span(mi), we can write the marginal likelihood190
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as:191

(SM4.1) p(x) =

∫
Rnkl

p(m)L(x|M) dm192

But from (3.3) we have likelihood L(xi|Mi) = 1(xi ∈ [mi]) = 1(mi ∈ [xi]), so the193

integrant in (SM4.1) only takes positive values for m ∈
∏l

i=1[xi], which is a measure-194

zero subset of the integration domain Rnkl. This means that the marginal likelihood is195

identically zero.196

Alternatively, we may modify the definition of marginal likelihood to only integrate197

over the support S of a singular likelihood, and define a modified marginal likelihood198

as:199

(SM4.2) p̃(x) =

∫
S

p(m)L(x|M) dm200

Proposition SM4.1. Let □̆ = XT (K−1
l ⊗ In)X. The log modified marginal likeli-201

hood of data is:202

(SM4.3) log p̃(x) = −1

2
(n− k)kl log(2π)− k

2
(n log |Kl|+ log |□̆|)203

Proof of Proposition SM4.1. As in the proof of Theorem 3.1, the support of the204

likelihood can be written as S =
∏l

i=1 X
k
i , a linear subspace of Rnkl where

∏l
i=1[xi] is205

a full-measure subset. Substituting prior joint distribution m ∼ Nnkl(0,Kl ⊗ Ink) into206

(SM4.2), we have:207

p̃(x) =

∫
S

Nnkl(m; 0,Kl ⊗ Ink)

l∏
i=1

1(mi ∈ [xi]) dm208

209

With the same reasoning that leads to (SM1.1), let mi = vec(XiAi), then we can210

change the integration domain to Rkkl and replace dm with da, which gives:211

p̃(x) =

∫
Rkkl

Nnkl(m; 0,Kl ⊗ Ink) da212

=

∫
Rkkl

det(2πKl ⊗ Ikn)
−1/2 exp

(
−1

2
mT (K−1

l ⊗ Ikn)m

)
da213

214

With (SM1.6), let □̆ = XT (K−1
l ⊗ In)X and because da = da(13×2), we have:215

p̃(x) =

∫
Rkkl

det(2πKl ⊗ Ikn)
−1/2 exp

(
−1

2
aT(13×2)(Ik ⊗ □̆)a(13×2)

)
da(13×2)216

217

With Gaussian integral
∫
Rn exp

(
− 1

2 (x− µ)TΣ−1(x− µ)
)
dx = det(2πΣ)1/2, we have:218

p̃(x) = det(2πKl ⊗ Ikn)
−1/2 det(2π(Ik ⊗ □̆)−1)1/2219

= (2π)−nkl/2 det(Kl)
−nk/2(2π)kkl/2 det(□̆)−k/2

220

= (2π)−(n−k)kl/2 det(Kl)
−nk/2 det(□̆)−k/2

221222

Taking a logarithm gives the result in (SM4.3).223

Proposition SM4.2. Maximizing the modified marginal likelihood p̃(x) leads to224

a singular covariance matrix Kl.225
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Proof of Proposition SM4.2. With Proposition SM4.1, we have226

− log p̃(x) ∝ h(β) := n log |Kl|+ log |XT (K−1
l ⊗ In)X|227228

Maximizing p̃(x) is equivalent to minimizing the objective function h(β). Let Q =229

(X,X⊥) be an orthogonal completion of X, then |Kl|n = |Kl ⊗ In| = |K−1
l ⊗230

In|−1 = |Q(K−1
l ⊗ In)Q|−1. Let B = QT (K−1

l ⊗ In)Q, with block structure B =231

[B11 B12;B
T
12 B22] where B11 is order-kl, then we have:232

h(β) = log
|XT (K−1

l ⊗ In)X|
|QT (K−1

l ⊗ In)Q|
= log

|B11|
|B|

233

234

Note that B is positive semi-definite and so is B11. By the determinant properties235

of a block matrix, we have |B| = |B11||C2|, where C2 = B22 − BT
12B

−1
11 B12. By236

the inverse properties of a block matrix, C−1
2 is the trailing principal submatrix of237

B−1 = QT (Kl ⊗ In)Q. Therefore,238

h(β) = log(|C2|−1) = log |C−1
2 | = log |XT

⊥(Kl ⊗ In)X⊥|239240

As Kl tends to singularity, so does |XT
⊥(Kl ⊗ In)X⊥|, which means the objective241

function h(β) drops to negative infinity. Therefore, minimizing h(β) selects a singular242

Kl.243

With an SE kernel, increasing length-scales drives Kl to singularity. By Proposi-244

tion SM4.2, maximizing the modified marginal likelihood gives infinite length-scales.245

Another model selection criteria is the log LOOCV predictive probability density.246

Because the predictive distribution of our GPS model is MACG(Σ), we have:247

log pLOO =

l∑
i=1

log pMACG(Xi;Σ−i) = −
1

2

l∑
i=1

(
k log |Σ−i|+ n log |XT

i (Σ−i)
−1Xi|

)
248

249

Here, Σ−i is defined in (5.4), predicting the i-th sample point using the other points.250

Similar to the proof of Proposition SM4.2, let Qi = (Xi,Xi⊥) be an orthogonal251

completion ofXi, letB = QT
i (Σ−i)

−1Qi, and letB11 be its leading principal submatrix252

of order k, then253

log pLOO = −1

2

l∑
i=1

log
|B11|n

|B|k
254

255

Note that both B and B11 are positive semi-definite, and of orders n and k respectively.256

As length-scale increases, both determinants increase. When n is not way larger than k,257

as in our visualization example on G1,2, the LOOCV predictive probability density can258

select a good length-scale. But when n is much larger than k, as in our example PROM259

problems, the numerator is less influential than the denominator, and maximizing260

pLOO gives infinite length-scales.261

SM5. Computation time for the anemometer examples. In Table 1, we262

compared the computational costs of the GPS and three other methods for PROM.263

The time complexities are broken down into various stages, measured in floating point264

operations, and are accurate up to the dominant terms. Coefficients are provided for265

all items except one. Therefore, this is the most general result for cost comparison.266
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Table SM1
Computation time for 1-parameter anemometer, k = 20.

Preprocess Subspace ROM Training

local POD 59s 7.5s 1.7s -
GPS 0.6s 1.1s 1.7s 0.74s
Subspace-Int 2.0s 4.6s 1.0s -
Manifold-Int 0.1s - 1.1s -
Matrix-Int 1.3s - 0.1s -

Table SM2
Computation time for 3-parameter anemometer, l = 18.

Preprocess Subspace ROM Training

local POD 71s 8.9s 1.9s -
GPS 2.9s 3.2s 1.7s 4.2s
Subspace-Int 15s 10s 1.0s -
Manifold-Int 0.54s - 1.4s -
Matrix-Int 2.2s - 0.16s -

Measured computation time depends on many factors besides the algorithm such267

as computer hardware, programming platform, algorithm implementation, and other268

processing commands apart from the main algorithm. It also depends on system269

dimension n, subspace dimension k, and sample size l. Such measurements can thus270

be misleading, and we do not provide them in the main text.271

Tables SM1 and SM2 are typical computation times for the anemometer examples272

in section 7. In both cases, n = 29, 008, k = 20, and we use m = 50 snapshots to273

generate the POD bases. Simulation time is included in the tables as the preprocessing274

step for local POD. For Table SM1, l = 7, parameter dimension d = 1, and the number275

of predictions is 101. For Table SM2, l = 18, parameter dimension d = 3 but an276

isotropic lengthscale is used, and the number of predictions is 118.277

SM6. A limitation of interpolation on tangent space. In general, subspace278

interpolation is more accurate than the other two interpolation methods. But when: (1)279

sample size l is small; (2) subspace dimension k is large; or (3) parameter dimension d280

is large, the accuracy of all these methods can be unsatisfactory. [SM1] Sec. 9.6 also281

noted that the accuracy of matrix interpolation deteriorates between sample points282

when k increases, and gave a tentative explanation. Here we give an explanation of why283

interpolation on tangent spaces of a manifold, which includes subspace and manifold284

interpolation, fails in these situations.285

When a point p′ on a complete Riemannian manifold M is pulled back to the286

tangent space TpM of a reference point p via the exponential map, the preimage287

exp−1
p (p′) contains an infinite number of tangent vectors. The Riemannian logarithm288

logp(p
′) is defined as the smallest tangent vector within this preimage, which lies289

in a star-shaped neighborhood of zero called the injectivity domain ID(p). When a290

continuous map f : Θ 7→ M is pulled back to TpM, the preimage (exp−1
p ◦f)(Θ)291

may have a connected component in ID(p), which can be approximated given enough292

sample points. But this component will be increasingly distorted as it approaches the293
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boundary of ID(p), called the tangent cut locus TCL(p). This phenomenon can be294

observed, for example, in an azimuthal equidistant projection of the Earth. If the295

preimage only has connected components that intersects TCL(p) or beyond, then the296

map cannot be approximated on TpM by continuous maps interpolating points in297

ID(p). As l decreases, d increases, or k increases, all sample points become further298

away from each other, and their Riemannian logarithms move closer to the tangent299

cut locus for any reference point. And as d or k increases, the map is more likely to300

cross the cut locus of any reference point. Therefore, the map becomes more difficult301

to approximate on the tangent space in these situations.302

SM7. On approximating local IRKA bases. The microthruster example is303

just to showcase the accuracy of our proposed method when combined with a ROM304

method based on two-sided projection. The specific combination with IRKA may305

have several potential issues. First, IRKA only provides a local optimal ROM, and306

there may be an abundance of them depending on the dimensions of the full and307

the reduced model. Therefore, different runs of IRKA may give very different pairs308

of reduced subspaces, This is reflected in Figure 4, as the error curve of local IRKA309

is occasionally unsmooth. But for a method that approximates a subspace-valued310

mapping to work well, the true mapping needs to be well-defined and smooth in general.311

Second, a continuous trajectory of local H2-optimal ROMs may not be all stable, which312

is possible because IRKA may converge to unstable ROMs. In fact, stability may break313

multiple times as parameter varies. Finally, there may not be a continuous trajectory314

of local H2-optimal ROMs across the parameter space, so a good sample of local IRKA315

subspaces may not exist. In Figure SM1, we show some results for k = 14, where we316

use a sample of 10 points for our model. For the three segments of the parameter space317

where the error curve of local IRKA is relatively continuous, our method is able to318

maintain the error level, but overall the error curve is discontinuous and the ROMs319

can be unstable. This situation gets worse as k increases in this example.320

Fig. SM1. Relative H2 error for the microthruster. k = 14. Training data are shown as solid
points. Disconnected test data are shown as hollow points.
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