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Talk outline
Overview: probabilistic distributions with geometric structure

Related literature

Bootstrap variants for regression

Normal-bundle bootstrap: algorithm, statistical theory

Experiments:

1. Inference: confidence set of density ridge
2. Data augmentation: regression by deep neural net

More on ridge estimation

Discussion

Ongoing research
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When data sets are modelled as multivariate
probability distributions, such distributions
often have salient geometric structure.

Examples:

Regression;
Topological data analysis, incl. manifold
learning.
Deep learning;

Manifold distribution hypothesis:

Natural high-dimensional data
concentrate close to a nonlinear low-
dimensional manifold.

Goal: generate new data which preserve the
geometric structure of a probability distribution
modelling a given data set.

This Paper: Normal-bundle bootstrap, a variant
of the bootstrap resampling method.

Applications:

1. Inference of statistical estimators.
2. Data augmentation: increase training data

diversity to reduce overfitting, without
collecting new data.

Inspirations:

Algorithms for nonlinear dimensionality
reduction: subspace-constrained mean shift
(SCMS) for density ridge estimation;
Constructions in differential geometry: fiber
bundle;

Overview
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Data generating mechanism:

Fitted (regression) model:

Residuals:

Residual bootstrap (global):

Wild bootstrap: @WuCF1986

(more generally, )

Replacing the model from regression to
dimensionality reduction, we can obtain other
bootstrap variants.

Linear Regression Principal Component Analysis

Smooth Regression Principal Curve / Ridge Estimation

Regression Dimensionality Reduction
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Dimensionality reduction vs. regression: linear
and non-parametric methods. Adapted from
[@Hastie1989, Fig 1].

Bootstrap variants for regression

arxiv.org/abs/2007.13869

y = f(x) + ε(x), μ

ε

= 0
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For a 2d Gaussian PDF (blue contours), its 1d
density ridge (bold line) is its 1st principal
component line, where the normal spaces (thin
lines) are parallel to the 2nd principal
component. Probability density on the normal
spaces (right margin) declines faster than that on
the ridge (top margin).

In general, density ridges are nonlinear, and its
normal bundle (the collection of normal spaces)
decomposes the original distribution into one on
the ridge and one on each normal space.

Density ridge and its normal bundle
ab
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NBB algorithm: (marked steps are optional)

1. kernel bandwidth selection
2. ridge estimation
3. align bottom-  eigenvectors
4. coordinates of normal vectors
5. -nearest neighbors on ridge
6. construct new data

:

1. 
2. , for 
3. 
4. , for 
5. 
6. , for 

The algorithm moves data points (blue) to the
ridge (red) and, for each ridge point, picks
neighboring ridge points (shade) and adds the
projection vectors (dashed line) to construct new
data points (hollow). Using a smooth frame can
keep the constructed points in the normal space.

cb

B, basin of attraction; R, density ridge; π,
projection; U, a neighborhood in density ridge.

Normal-bundle bootstrap
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Parabola with heteroscedastic
error.

Data geneating mechanism:

(left) data generation: noiseless
model (black), data (blue).

(right) ridge estimation:
estimated ridge (red).

(bottom) "residual" plot:
projection vectors (black),
neighborhood of a random ridge
point (red). Neighborhood size k
= N / 16. (Relative size: 6.25%)

Example
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Assumption: In a neighborhood  of ridge ,

 is three times differentiable;
 is sharply curved in normal spaces:

 and , where ;
trajectories  are not too wiggly and
tangential gradients  are not too
large:

.

Theorem (consistency): Let the assumptions hold
for the measure  in the basin of attraction ,
and the conditional measure  varies slowly
over the ridge , then for each estimated ridge
point , as sample size 
, the distributions of the constructed data points 

, , converge to the distribution restricted
to the fiber of the estimated ridge point:

Finite-sample behavior is also very good:

As soon as the estimated ridge becomes close
enough to the true ridge such that the conditional
measures  over the estimated ridge vary
slowly, the conditional measures on neighboring
fibers become similar to each other: .
This would suffice to make the constructed data
distribute similarly to the original measure
restricted to a fiber:

Even if the estimated ridge has a finite bias to the
true ridge, it would not affect the conclusion.

Statistical theory
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NBB confidence set: (confidence level )

For ,  is the mode estimated from the
constructed points , and  is the -upper
quantile of .

Bootstrap confidence set: @ChenYC2015

Here,  is the -upper quantile of 
.
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Inference: confidence set of density ridge

Experiment: , , .
Data (blue), estimated ridge (red), true ridge 
(black), 90% confidence sets of true ridge (gray) by
NBB (a) vs. bootstrap (b). N = 128.
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Metrics of NBB (orange) and bootstrap (blue) over
an ensemble of samples: (c) coverage rate, mean
(solid line) and 90% prediction interval (shade);
(d) average computation time.

 is valid throughout the range of sample

sizes computed, while the validity of  slowly

improves. Moreover,  is computationally

costlier than , due to repeated ridge
estimation. Although repeated mode estimation is
also costly, it is faster than ridge estimation of the
same problem size.

Note that other population parameters like mean
and quantiles can be estimated much faster than
the mode, so the related inference using NBB will
be much faster than in this example, such as
confidence sets of principal manifolds. Hastie1989

Inference: metrics on NBB vs. boostrap
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The neural network is a
sequential model with 4 densely
connected hidden layers, which
have 256, 128, 64, and 32 units
respectively and use the ReLU
activation function; the output
layer has 16 units. We train the
network to minimize mean
squared error. Set  in
NBB.

Without augmentation the
network starts to overfit around
epoch 100, while with
augmentation the network trains
faster, continues to improve
over time, and has a lower error.

0.0 0.5 1.0 1.5 2.0

-1.0

-0.5

0.0

0.5

1.0

theta

x1

original
augmented

10 100 10000.1

0.2

0.3 Mean Absolute Error

Epoch

train
validate
NBB train
NBB validate

Data augmentation. (left) original and augmented data,
showing  only. Noiseless true model in black line.
(right) training and validation error with and without NBB.

Data augmentation: regression by deep neural net
True model: , where  and . 

Observation: . 

Training dataL . Let  and , so the training data is a  matrix.
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Definition: Ridge of dimension  for
a twice differentiable function ,
denoted as , is the set of points where
the  smallest eigenvalues of the Hessian
are negative, and the span of their eigenspaces
are orthogonal to the gradient:

Here, Hessian  has an eigen-
decomposition , where 
and  is in increasing order. Let 

 where  and  are column
matrices of  and  eigenvectors respectively.
Denote projection matrices , 

, and gradient .

Assumption: Let ,
assume that:

1. ;
2. for some , 

is an embedded -dimensional submanifold
of .

Estimation by subspace-constrained mean shift
(SCMS): @Ozertem2011

subspace-constrained gradient flow:

SCMS update:

Asymptotic theory:

Geometric and topological consistency and
convergence rates of estimated ridge to true
ridge and hidden manifold. @Genovese2014
Bootstrap gives consistent confidence sets of
smoothed ridge. @ChenYC2015

Density ridge
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Density ridge

Gradient flow

Subspace
constrained
gradient flow

Gradient field:

Subspace-constrained gradient field:

a b

Subspace-constrained gradient flow as projection
to estimated density ridge. Data (blue points);
true (gray curve) and estimated (red curve)
density ridge; trajectories (orange curves),
pointing towards estimated ridge. (a) True ridge
is the unit circle, a manifold without boundary;
the estimated ridge is also without boundary. (b)
True ridge is a parabola segment, a manifold
with boundary; the estimated ridge is
unbounded.

Subspace-constrained gradient flow
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With a stronger smoothness and manifold assumption, under the
subspace-constrained gradient flow, each data point  converges to
an estimated ridge point  with probability one:

Proposition (flow): If  has bounded super-level sets 
 for all , then  generates a semi-

flow . If  has a compact support , let 
, , then  generates a flow . Moreover, if 

 is locally Lipschitz or , , then  is locally Lipschitz or 
, respectively.

Proposition (convergence): If  is analytic and has bounded
super-level sets, then every forward trajectory converges to a fixed
point: , , .

Proposition (basin): If  is analytic and has a compact support 
, and  and 
are, respectively, embedded - and -submanifolds of , then

 is a subset of full Lebesgue measure and therefore has probability
one: , , where  is the Lebesgue measure on 

.

Qualitative properties of dynamical system
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Kernel bandwidth selection:

Maximum likelihood bandwidth
tends to be too small, such that
the estimated ridge often has
isolated points. We use an
oversmoothing parameter α,
usually between 2 and 4, and
good estimates can be often
obtained across a wide range of
α values. @ChenYC2015b gave a
method to select h that
minimizes coverage risk
estimates.

Acceleration of SCMS:

A naive implementation of SCMS
would be linearly convergent,
and have a computational
complexity of  per
iteration, where the  part
comes from computing for each
update point  using all data
points, and the  part comes
from eigen-decomposition of the
Hessian.

To reduce computation per
iteration to :

local KDE: use the -nearest
data points for density
estimation;
partial eigen-
decomposition: compute
only the top-  eigen-pairs;

To reduce number of iterations,
use Newton's method for root
finding to obtain quadratic
convergence:

where  solves

or

The former only requires
(partial) eigen-decomposition at
the first step, and the latter has a
larger convergence region.
@ZhangRD2020nr

Discussion
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Ongoing research
Probabilistic learning on manifolds (theory):

Normal-bundle bootstrap.
Kernel density estimation and sampling on submanifolds.
Manifold-base joint probabilistic models.

Applications:

Surrogate modeling, with application to oil spill models.

Numerical procedures:

Newton retraction as approximate geodesics on submanifolds.
Acceleration of SCMS.
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