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Newton retraction as approximate geodesics on submanifolds

Ruda Zhang

Abstract Efficient approximation of geodesics is cru-
cial for practical algorithms on manifolds. Here we in-
troduce a class of retractions on submanifolds, induced
by a foliation of the ambient manifold. They match the
projective retraction to the third order and thus match
the exponential map to the second order. In particular,
we show that Newton retraction (NR) is always stabler
than the popular approach known as oblique projection
or orthographic retraction (OR): per Kantorovich-type
convergence theorems, the superlinear convergence re-
gions of NR include those of OR. We also show that NR
always has a lower computational cost; it can be twice
as fast, and possibly better if constraints are sparse.
The preferable properties of NR are useful for sampling,
optimization, Bayesian inference, and many other sta-
tistical problems on manifolds.
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1 Introduction

Consider a function

F ∈ Ck(Rn,Rc),
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for which 0 is a regular value. By the regular level set
theorem (see e.g. Hirsch, 1976, Thm 3.2), the zero set
F−1(0) is a properly embedded Ck submanifold of Rn

with codimension c and dimension d = n − c. We call
F (x) the constraint function and define the constraint
manifold

M = F−1(0).

Depending on the context, M may also be called an
implicitly-defined manifold, a solution manifold, or an
equilibrium manifold. A geodesic γv(t) in the manifold
is a curve with initial location x, initial velocity v, and
zero intrinsic acceleration. All the geodesics are encoded
in the exponential map exp : E 7→ M such that

exp(x, v) = γv(1),

where (x, v) ∈ E ⊂ TM.
The exponential map is crucial for analysis and com-

putation on manifolds. Application to problems on man-
ifolds include optimization (Adler et al., 2002; Absil
et al., 2008; Ge et al., 2015; Zhang and Sra, 2016; Boumal
et al., 2018), differential equations (Hairer et al., 2006),
interpolation (Sander, 2015), sampling (Brubaker et al.,
2012; Byrne and Girolami, 2013; Liu et al., 2016; Leimkuh-
ler and Matthews, 2016; Zappa et al., 2018; Mangoubi
and Smith, 2018; Lelievre et al., 2019; Goyal and Shetty,
2019; Zhang, 2020), approximate Bayesian computation
(Marin et al., 2012; Chua, 2020), and many other prob-
lems in statistics (Chen, 2020). If the exponential map
is not known in an analytic form or is not computation-
ally tractable, it can be approximated by numerically
integrating the geodesic trajectory, i.e. solving the or-
dinary differential equation Dtγ

′
v(t) = 0 with initial

conditions γv(0) = x, γ′
v(0) = v. For submanifolds, this

can also be done by projecting x + v to M, which re-
quires solving a constrained minimization problem. In
general, an approximation to the exponential map is
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Table 1 Computation of geodesic steps on submanifolds, a qualitative comparison.

method manifold approximation stepsize cost examples
analytic geodesics simple exact any - Byrne and Girolami (2013); Liu et al.

(2016); Mangoubi and Smith (2018); Goyal
and Shetty (2019)

numerical geodesics level set variable order tiny high Leimkuhler and Matthews (2016)
projective retraction level set 2nd order almost any high
orthographic retraction level set 2nd order small low Brubaker et al. (2012); Zappa et al. (2018);

Lelievre et al. (2019)
retraction by foliation general 2nd order (1) large - Zhang (2020); Zhang and Ghanem (2020)
Newton retraction level set 2nd order (1) large (3) lower (4) Adler et al. (2002)
* Cross-referenced are results in this paper.

called a retraction (Adler et al., 2002). As is widely ac-
knowledged (see e.g. Absil et al., 2008; Zhang and Sra,
2016; Boumal et al., 2018), retractions are often far less
difficult to compute than the exponential map, which
allows for practical and efficient algorithms.

In this article, we introduce a class of second-order
retractions on submanifolds, which move points along
manifolds orthogonal to the constraint manifold. We
call them “retractions induced by normal foliation”. Of
particular interest among this class is Newton retrac-
tion (NR), which we show to have better convergence
property and lower computational cost than the pop-
ular approach known as oblique projection or ortho-
graphic retraction (OR). Table 1 gives a qualitative
overview of methods for computing geodesics, where
we summarize some of our results.

1.1 Related Literature

Retraction was first defined in Adler et al. (2002) for
Newton’s method for root finding on submanifolds of
Euclidean spaces, which was applied to a constrained
optimization problem over a configuration space of the
human spine. In particular, they proposed a retraction
for constraint manifolds using Newton’s method, which
we study in this paper. Retractions are widely useful
for optimization on manifolds. Noisy stochastic gradi-
ent method (Ge et al., 2015) escapes saddle points effi-
ciently, which uses projective retraction for constrained
problems. For geodesically convex optimization, Zhang
and Sra (2016) studied several first-order methods using
the exponential map and a projection oracle, while ac-
knowledging the value of retractions. The Riemannian
trust region method has a sharp global rate of con-
vergence to an approximate second-order critical point,
where any second-order retraction may be used (Boumal
et al., 2018).

Sampling on manifolds often involves simulating a
diffusion process, which is usually done by a Markov
Chain Monte Carlo (MCMC) method. Brubaker et al.

(2012) generalized Hamiltonian Monte Carlo (HMC)
methods to distributions on constraint manifolds. Their
constrained HMC simulates the Hamiltonian dynamics
with the RATTLE scheme (Andersen, 1983), in which
orthographic retraction is used to maintain state and
momentum constraints. Byrne and Girolami (2013) pro-
posed geodesic Monte Carlo (gMC), an HMC method
for submanifolds with known geodesics. Liu et al. (2016)
proposed two stochastic gradient MCMC methods for
manifolds with known geodesics, including a variant of
gMC. For molecular dynamic simulation with config-
uration constraints, Leimkuhler and Matthews (2016)
proposed a numerical scheme for constrained Langevin
dynamics, which samples the configuration manifold.
Criticizing the stability and accuracy limitations in the
SHAKE method and its RATTLE variant—both of which
use orthographic retraction—their scheme approximated
geodesics by numerical integration. Zappa et al. (2018)
proposed reversible Metropolis random walks on con-
straint manifolds, which use orthographic retraction.
Lelievre et al. (2019) generalized the previous work to
constrained generalized HMC, allowing for gradient forces
in proposal; it uses RATTLE. In this line of work, it
is necessary to check that the proposal is actually re-
versible, because large timesteps can lead to bias in the
invariant measure. The authors pointed out that nu-
merical efficiency in these algorithms requires a balance
between stepsize and the proportion of reversible pro-
posed moves. More recently, Zhang (2020) proposed a
family of ergodic diffusion processes for sampling on
constraint manifolds, which use retractions defined by
differential equations. To sample the uniform distri-
bution on compact Riemannian manifolds, Mangoubi
and Smith (2018) proposed geodesic walk, which uses
the exponential map. Goyal and Shetty (2019) used
a similar approach to sample the uniform distribution
on compact, convex subsets of Riemannian manifolds,
which can be adapted to sample an arbitrary density
using a Metropolis filter; it uses the exponential map.
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Table 2 Some MCMC methods on constraint manifolds.

paper MCMC family method name geodesic computation
Brubaker et al. (2012) HMC constrained HMC RATTLE (OR)
Byrne and Girolami (2013) HMC gMC exponential map
Liu et al. (2016) HMC gSGNHT, SGGMC exponential map
Leimkuhler and Matthews (2016) Langevin g-OBABO numerical integration
Mangoubi and Smith (2018) - geodesic walk exponential map
Goyal and Shetty (2019) Metropolis adapted geodesic walk exponential map
Zappa et al. (2018) Metropolis Metropolis random walk OR
Lelievre et al. (2019) GHMC constrained GHMC RATTLE (OR)
Zhang (2020) - ergodic diffusions retraction by ODE

Many other statistical problems on constraint man-
ifolds are discussed in Chen (2020), where Newton re-
traction can be very useful. For example, in approxi-
mate Bayesian computation (Marin et al., 2012), con-
straints are imposed on certain summary statistics and
one wants to approximate the posterior distribution.
Newton retraction can be used to maintain such con-
straints on the parameter space.

In probabilistic learning on manifolds (Soize et al.,
2020; Zhang et al., 2020), a retraction based on con-
strained gradient flow is used for inference and data
augmentation on density ridge (Zhang and Ghanem,
2020), which falls into the family of retractions defined
in this paper.

2 Newton Retraction

2.1 Preliminaries

Retractions (Adler et al., 2002) are mappings that pre-
serve the correct initial location and velocity of the
geodesics; they approximate the exponential map to
the first order. Second-order retractions (Absil et al.,
2008, Prop 5.33) are retractions with zero initial accel-
eration; they approximate the exponential map to the
second order. In general, we define retraction of an ar-
bitrary order as follows.

Definition 1 Retraction R(x, v) of order i on a Ck

manifold, 1 ≤ i < k, is a Ck−1 mapping to the manifold
from an open subset of the tangent bundle containing
all the zero tangent vectors, such that at every zero
tangent vector it agrees with the exponential map in
Riemannian distance to the i-th order:

R ∈ Ck−1(U,M), ζ(M) ⊂ U ⊂ TM,

∀(x, v) ∈ TM, t ∈ R,
R(x, tv) = exp(x, tv) + o(ti),

in the sense that,

lim
t→0

dg(R(x, tv), exp(x, tv))/ti = 0

Absil and Malick (2012) defined a class of retrac-
tions on submanifolds of Euclidean spaces, called projection-
like retractions. This includes projective and orthographic
retractions, both of which are second-order.

Definition 2 (Absil and Malick (2012), Def 14)
Retractor V (x, v) of a Ck submanifold of Rn with codi-
mension c is a Ck−1 mapping from tangent vectors to
linear c-subspaces of the ambient space, such that for
every zero tangent vector, affine space of the form

A(x, v) = x+ v + V (x, v)

intersects the submanifold transversely:

V ∈ Ck−1(U,Gc,n),

∀(x, v) ∈ U,A(x, v) ∩M 6= ∅,
∀x ∈M, A(x, 0) ⋔M.

Here Gc,n is the Grassmann manifold.
Projection-like retraction RV (x, v) induced by a retrac-
tor is a correspondence that takes a tangent vector to
the set of points closest to the origin of the affine space
that intersects the submanifold:

RV : U ⇒M,

RV (x, v) = argmin
y∈A(x,v)∩M

‖y − (x+ v)‖.

In particular, it is a mapping if the tangent vector is
small enough:

∀x ∈M,∃U ′ ⊂ U, (x, 0) ∈ U ′ :

RV |U ′ ∈ Ck−1(U ′,M).

Definition 3 Projective retraction

RP (x, v) = PM(x+ v),

where projection

PM(x) = argmin{‖y − x‖ : y ∈M},

and can be seen as the projection-like retraction in-
duced by retractor

V (x, v) = NpM,

p = PM(x+ v).
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Fig. 1 Illustration of retractions on an ellipse. With initial point x and tangent vector v, retraction R(x, v) returns: O, orthographic;
P , projective; N , Newton (intermediate points are shown).

Orthographic retraction RO(x, v) is the projection-like
retraction induced by retractor

V (x, v) = NxM.

Lemma 1 (Absil and Malick (2012), Thm 15,
22) Projection-like retraction is a (first-order) retrac-
tion. It is second-order if the retractor maps every zero
tangent to the normal space:

∀x ∈M, V (x, 0) = NxM.

2.2 Main Results

Here we define another class of second-order retractions
on submanifolds, based on foliations that intersect the
submanifold orthogonally. Such foliations may be gen-
erated by a dynamical system, where each leaf is a sta-
ble invariant manifold. In particular, we are interested
in Newton retraction, generated by a discrete-time dy-
namical system with quadratic local convergence. Such
retractions can also be generated by flows: Zhang (2020)
used gradient flows of squared 2-norm of the constraint,
Zhang and Ghanem (2020) used constrained gradient
flows of log density function; both have linear local con-
vergence and, with sufficiently small steps, global con-
vergence.

Definition 4 Normal foliation F of a neighborhood
of a codimension-c submanifold of a Riemannian n-
manifold is a partition of the neighborhood into con-
nected c-submanifolds (called the leaves of the foliation)

which intersect the submanifold orthogonally:

F = tp∈MFp,

∪p∈MFp = D,M⊂ D ⊂ M̃,

∀p ∈M, TpFp = (TpM)⊥

Retraction induced by a normal foliation is the map

RF = π ◦ R̃,

where R̃ is a retraction on the ambient manifold and π

is the canonical projection:

π : D 7→ M,

∀x ∈ D,x ∈ Fπ(x).

If M̃ = Rn, let R̃ be the Euclidean exponential map

E(p, v) = p+ v,

we have
RF (x, v) = π(x+ v),

RF : E−1(D) 7→ M.

Recall that for the under-determined system of non-
linear equations F (x) = 0, Newton’s minimum-norm
step is

δ(x) = −J†(x)F (x),

where Jacobian J = ∇F , Jij = ∂F i/∂xj , and † denotes
the Moore-Penrose inverse. If J has full row rank, then

J† = JT (JJT )−1.
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Fig. 2 Approximate projection by a normal foliation. Leaf Fr intersects the submanifold M orthogonally at r and intersects
tangent space TxM at y. Tangent spaces TrFr and TxM intersect at y′.

Newton map, or Newton’s least-change update, is

NF (x) = x+ δ(x) = x− J†(x)F (x).

Newton limit map is the mapping

N∞
F ∈ Ck−1(D,M),

N∞
F (x) = lim

n→∞
Nn

F (x),

where D is a neighborhood ofM. Adler et al. (2002, Ex
4) showed that given any retraction R̃ on the ambient
manifold, N∞

F ◦ R̃ is a retraction on M. We call this
map Newton retraction.

Definition 5 Newton retraction is the map

RN ∈ Ck−1(E−1(D),M),

RN (x, v) = N∞
F (x+ v),

and can be seen as the retraction induced by the normal
foliation determined by the Newton map:

N = tp∈MNp,

Np = {x ∈ D : N∞
F (x) = p}.

To show that the retractions we defined are second-
order, we give two lemmas. First, projective retractions
form a class of retractions of order two and not of any
higher order. Second, the retraction induced by a nor-
mal foliation matches the projective retraction at zero
tangent vectors to the third order.

Lemma 2 For every Ck submanifold M, k ≥ 3, the
projective retraction RP satisfies:

∀(x, v) ∈ TM, t ∈ R,
RP (x, tv) = exp(x, tv) + o(t2).

There exists a Ck submanifold, k ≥ 4, such that the
previous condition does not hold if o(t2) is replaced by
o(t3).

Lemma 3 Given a submanifoldM⊂ Rn and a normal
foliation F of a neighborhood of M,

∀(x, v) ∈ TM,

RF (x, v) = RP (x, v) + o(‖v‖3).

Theorem 1 Retraction RF induced by a normal folia-
tion, which includes Newton retraction RN , is a second-
order retraction. This characterization of order is sharp.

Although RN and RO are both second-order retrac-
tions, they have different domain sizes. Notice that the
projection from a Euclidean space onto a compact sub-
set is uniquely defined except for a subset of measure
zero, so the projective retraction RP on a compact sub-
manifold is defined almost everywhere on the tangent
bundle. On the other hand, RO may be undefined for
large tangent vectors as the affine space x+ v +NxM
fails to intersect the submanifold, see Figure 1. This
precludes the domain of RO to a relatively small sub-
set of the tangent bundle, regardless of implementation.
Since RN matches RP to the third order while RO and
RP can differ on the third order, it is easy to see that
RN can have a larger domain than RO.

Now we characterize the domain of RN relative to
that of RO in their usual implementation. Algorithm 1
gives an implementation of RN , which uses Newton’s
method to solve:

F (x) = 0

x0 = x+ v ∈ Rn.

In comparison, RO is usually implemented using New-
ton’s method to solve:

F (x0 + J(x)T y) = 0

y0 = 0 ∈ Rc
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Algorithm 1 Newton Retraction
1: Given: point and tangent vector (x, v), convergence threshold c0
2: x← x+ v
3: repeat
4: J ← J(x)
5: solve (JJT )y = F (x)
6: δ ← −JTy
7: x← x+ δ
8: until ‖δ‖ < c0
9: return x

This means replacing line 5 with

(JJT
−1)y = F (x)

and line 6 with
δ ← −JT

−1y,

where J−1 = J(x) is evaluated at the input x. It can
be seen as an augmented Jacobian algorithm for solv-
ing under-determined systems of nonlinear equations:
denote the Stiefel manifold

Vd,n = {X ∈Mn,d(R) : XTX = Id},

given V ∈ Vd,n, step δ(x) is defined by

J(x)δ(x) = −F (x),

V δ(x) = 0.

For RO, the algorithm starts with x0 = x+v and V sat-
isfies J(x)V = 0. Kantorovich-type convergence theo-
rems for Newton’s method and augmented Jacobian al-
gorithms are given in Walker and Watson (1990), which
provide sufficient conditions for immediately superlin-
ear convergence.

Definition 6 Let F ∈ C1(Rn,Rm) and J = ∇F . Let
C ⊂ Rn be open and convex, α ∈ (0, 1], K ≥ 0, and
B > 0. We say function F satisfies the normal flow
hypothesis,

F ∈ HNF(C;α,K,B),

if ∀x, y ∈ C,

‖J(x)− J(y)‖ ≤ K‖x− y‖α (1)
rank(J(x)) = m (2)
‖J(x)†‖ ≤ B (3)

Given V ∈ Vd,n, we say function F satisfies the aug-
mented Jacobian hypothesis,

F ∈ HAJ(V,C;α,K,B)

if ∀x, y ∈ C,

‖J(x)− J(y)‖ ≤ K‖x− y‖α (1)

rank
[
J(x)

V

]
= n (2’)∥∥∥∥∥

[
J(x)

V

]−1
∥∥∥∥∥ ≤ B (3’)

Theorem 2 (Walker and Watson (1990), Thm
2.1, 3.2)
If F ∈ HNF(C;α,K,B) then ∀η > 0, ∃ϵ > 0, Newton’s
method satisfies:

∀x0 ∈ {x ∈ C : Bη(x) ⊂ C, ‖F (x)‖ < ϵ},
∃ζ ∈ C ∩ F−1(0), lim

k→∞
xk = ζ;

in particular, ∃β > 0, ∀k ∈ N,

‖xk+1 − ζ‖ ≤ β‖xk − ζ‖1+α.

If F ∈ HAJ(V,C;α,K,B), then the previous statement
holds for the augmented Jacobian algorithm.

Per the previous Kantorovich-type convergence the-
orem, it follows immediately from the next lemma that
Newton retraction is always stabler than orthographic
retraction. Recall that RN has domain E−1(D), where
D is the domain of N∞

F , i.e. the convergence region of
Newton’s method, and RO has domain U . Let U ′ ⊂ U

be the convergence region of the usual implementation
of RO.

Lemma 4 For any V ∈ Vd,n, if

F ∈ HAJ(V,C;α,K,B),

then
F ∈ HNF(C;α,K,B).

Theorem 3 With the usual implementation of RN and
RO, for any α ∈ (0, 1], the order-(1 + α) convergence
region of RO guaranteed by Theorem 2 is a subset of
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that of RN :
Let

Dα = {x ∈ D : ∃(C,K,B, η, ϵ),

F ∈ HNF(C;α,K,B),

Bη(x) ⊂ C,

‖F (x)‖ < ϵ}
and

U ′
α = {(x, v) ∈ U ′ : ∃(C,K,B, η, ϵ),

F ∈ HAJ(Vx, C;α,K,B),

Bη(x+ v) ⊂ C,

‖F (x+ v)‖ < ϵ},

where Vx ∈ Vd,n, J(x)Vx = 0, then

∀α ∈ (0, 1], U ′
α ⊂ E−1(Dα).

Our next result shows that Newton retraction is al-
ways faster than orthographic retraction.

Theorem 4 With the usual implementation of RN and
RO, for any α ∈ (0, 1], for any (x, v) ∈ U ′

α, the num-
ber of operations required for RN to converge is no
greater than that for RO. In particular, RN admits lin-
ear solvers about twice as efficient as those for RO.

3 Discussion

We focus on comparing two methods for computing
geodesics, Newton retraction (NR) and orthographic re-
traction (OR), despite other methods listed in Table 1.
This is because for general constraint manifolds the ex-
ponential map is not available, and in cases where it is
available, retractions are often much easier to compute.
For algorithms that compute geodesics by numerical in-
tegration (Leimkuhler and Matthews, 2016), although
they can have higher orders of approximation depend-
ing on the scheme, it is at the cost of smaller stepsizes.
Projective retraction RP comes up in theoretical pa-
pers (Ciccotti et al., 2008, Eq. 3.1) but is rarely used
in practice due to the optimization problem involved.
Retractions RF induced by normal foliation typically
have linear convergence rather than quadratic conver-
gence, especially those implemented by solving ordinary
differential equations (ODEs) (Zhang, 2020; Zhang and
Ghanem, 2020). This leave us with RN and RO.

We have shown that, with small stepsizes, RN has
the same order of approximation to the exponential
map as RO (Lemma 1 and Theorem 1). And with their
usual implementation, RN has a larger domain than
RO (Theorem 3) which means larger stepsizes can be
used, and RN is always faster to compute than RO re-
gardless of stepsize (Theorem 4). Moreover, RN can be
seen as an efficient approximation of RP (Lemma 3).

For applications that take small geodesic steps, such
as molecular dynamics, NR can be readily applied in-
stead of OR due to faster speed. (See Table 2 for some
uses in MCMC.) The computational complexities per
iteration in NR and OR (see Algorithm 1) are both
dominated by the evaluation of the Jacobian which
are c × n real-valued functions, and the linear solver
in use, which invokes O(c3) algebraic operations. Both
methods terminate after a fixed number of iterations,
because of their immediately superlinear and typically
quadratic convergence. But because the coefficient ma-
trix in NR is symmetric positive-definite, the linear
equations can be solved using Cholesky decomposition,
which is roughly twice as fast as LU decomposition.
Cholesky decomposition is also numerically more sta-
ble and saves about half the storage, which is signifi-
cant when c is large. If the coefficient matrix is large
and sparse, efficient iterative methods such as precon-
ditioned conjugate gradient can be used for NR, which
can save more computation time and storage.

In case Jacobian evaluation is expensive and high
numerical accuracy is unnecessary, one may consider a
modified Newton retraction (mNR): run Algorithm 1
line 4 only for the first iteration, denote the outcome as
J0, and replace line 5 with

(J0J
T
0 )y = F (x).

As a corollary of Lemma 1, mNR is a second-order re-
traction. In this context, a natural implementation of
RO is to use a chord method: remove line 4, and replace
line 5 with

(J−1J
T
−1)y = F (x).

Both methods have linear convergence, but mNR has a
faster rate: let

‖xk+1 − x∞‖ ≤ µ‖xk − x∞‖,

then exists λ ∈ (0, 1) such that µ = λ‖v‖q, where q = 1

for RO and q = 2 for mNR (see e.g. Allgower and Georg,
1990, Eq 6.2.15). By Lemma 4, however, mNR is no
more stable than NR.

For applications where large stepsizes are desirable,
NR has the extra advantage that it can still converge
when OR cannot. On the other hand, OR can bene-
fit from its linear geometric structure for specific uses.
Zappa et al. (2018) used Metropolis adjustment to guar-
antee reversibility of random walks by OR, which elimi-
nates bias in the invariant measure, without computing
second-order derivatives. Lelievre et al. (2019) general-
ized this idea to GHMC. If RP is used instead, reverse
steps can still be exactly computed, but because the vol-
ume ratios depend on curvature and do not cancel out,
second-order derivatives need to be computed. If NR is
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used, exact reversal is not available due to nonlinear-
ity of the normal foliation, but sampling bias can still
be partially corrected by computing volume ratios in
the forward step and an approximate reversal. We note
that, with the timesteps for which the reversible meth-
ods are most efficient, most rejections are due to OR
failing to converge rather than reverse projection check
or Metropolis adjustment (see Lelievre et al., 2019, Ta-
ble 1). Moreover, if the computation is approximate in
nature, such as approximating a Bayesian posterior, ex-
act sampling is unnecessary.

4 Numerical Experiments

In this section we quantify the properties of NR versus
OR with some specific examples.

4.1 Compute time

First we compare their compute time per iteration, for a
family of submanifolds of varying dimensions. Following
Zappa et al. (2018), we use the orthogonal groups O(m),
each of which consists of m×m orthogonal matrices:

O(m) = {x ∈ Rm×m : xTx− Im = 0}.

To simplify discussion, we do not use the special orthog-
onal groups SO(m), which is one of the two connected
components of O(m) where the matrices have determi-
nant 1. Considering O(m) as a submanifold of Rm×m,
it can be written as the constraint manifold

O(m) = F−1(0)

F (x) = (Fij(x))i≤j

Fij(x) = xkixkj − δij

In this case, we have ambient dimension n = m2, codi-
mension c = m(m+ 1)/2, and manifold dimension d =

m(m − 1)/2. The Jacobian of the constraint functions
can be written as

Jijkl(x) =
∂Fij(x)

∂xkl
= δljxki + δilxkj .

We note that the Jacobian is a sparse matrix: among
the c×n entries, only m3 entries can be non-zero, that
is 2/(m+ 1) full.

To estimate average compute time, we obtain ran-
dom points on O(m) by generating random matrices
with standard Gaussian entries:

y ∈ Rm×m, yij ∼ N(0, 1),

and let x be the Q of the QR decomposition of y. We
obtain a random tangent vector at each x by gener-
ating random anti-symmetric matrices with standard
Gaussian entries:

Ω ∈ Rm×m, Ω = −ΩT

Ωij ∼ N(0, 1), i < j,

and let v = σxΩ where σ = 0.01
√

m/d.
We measure compute time of the linear algebra part

(line 5) of the first iteration in NR and OR, which is the
dominant part in this problem. For m ≤ 30, measure-
ments are averaged over 103 runs; for m > 30, 100 runs
are used. Figure 3a shows the relative time per iteration
of NR. Consistent with Theorem 4, NR is faster than
OR, and can be about twice as efficient using dense ma-
trix algorithms. We also used sparse matrix algorithms
for both methods, which are faster at higher dimen-
sions. In this case, NR can be more than ten times as
efficient.

4.2 Convergence region

Next we compare their convergence regions for two low-
dimensional submanifolds. We note that NR typically
can converge for very large step sizes. However, the out-
come would be meaningless other than being on the
constraint manifold. A better proxy for convergence re-
gion is the region of approximate zeros (see e.g. Blum
et al., 1998, Sec 8.1). If x0 is an approximate zero for
an iterative root-finding method, the algorithm should
produce a sequence {xk}k∈N the converges to a zero ζ,
F (ζ) = 0, such that relative distances to the associ-
ated zero is bounded by the quadratically convergent
sequence with coefficient 1/2:

ak =
‖xk − ζ‖
‖x0 − ζ‖

≤ bk, k ∈ N

b0 = 1, bk+1 = b2k/2.

An ellipse can be defined by the constraint function

F (x, y) =
(x
a

)2

+
(y
b

)2

− 1.

We take a = 1, b = 0.5. Using the parametrization

(x, y) = (a cos θ, b sin θ),

the tangent vectors can be written as{
vt

‖t‖
: t =

(
sin θ

b
,
− cos θ

a

)
, θ ∈ [0, 2π), v ∈ R

}
Figure 3b shows the region of approximate zeros on the
(θ, v)-plane. Consistent with Theorem 3, the conver-
gence region of NR contains that of OR, and for each
θ the relative size ranges between 2.17 and 2.64.
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Fig. 3 Numerical results. (a) Relative compute time per iteration of NR, compared with OR, for orthogonal groups O(m). Both
methods are computed with dense and sparse matrix algorithms for solving linear equations. (b) Location θ and tangent vector
v on an ellipse that correspond to approximate zeros using NR and OR. (c) Same as (b) but for the 2-torus example, starting
from (R + r, 0, 0) with tangent vector (0, y, z). (d) Histograms of angle ϕ of the samples using NR and OR. N = 106, s = 0.1.
Theoretical density is shown in black line.

A 2-torus can be defined by the constraint function

F (x, y, z) =
(√

x2 + y2 −R
)2

+ z2 − r2.

We take R = 1, r = 0.5. Figure 3c shows the region of
approximate zeros starting from (1.5, 0, 0) with tangent
vector (0, y, z). The results are similar, and the relative
size of the region for NR is about 3.1.

We note that, although the regions in these exam-
ples are simple, in general they are fractal, disconnected,
and not simply connected.

4.3 MCMC sampling

Following Diaconis et al. (2013); Zappa et al. (2018);
Lelievre et al. (2019), we sample the uniform distribu-
tion on the 2-torus, where the theoretical distribution

of the parameters are know: ϕ has probability density
function

f(ϕ) =
1

2π

(
1 +

r

R
cosϕ

)
.

We use the following random walk: given a point xn

on the torus, generate a random tangent vector vn,
which is an isotropic Gaussian vector with mean 0 and
standard deviation s; use a retraction to find a point
xn+1 on the torus; if the algorithm fails to converge,
let xn+1 = xn. Without Metropolis adjustment, finite
timestep s leads to bias in the invariant measure (see
Discussion). Figure 3d shows that, for the torus exam-
ple, when the timestep results in small bias using OR,
the bias is comparable if using NR.
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5 Proofs

Proof of Lemma 2. Absil and Malick (2012, Ex 18) showed
that projective retractions are second-order retractions,
so we only need to show that the projective retraction
of some manifold is exactly second-order. Consider the
circle S1 as a submanifold of the Euclidean plane, iden-
tified with the set

{(cos θ, sin θ) : θ ∈ [0, 2π)}.

Its exponential map is

exp(x, v) = xei∥v∥,

and its projective retraction is

RP (x, v) = (x+ v)/‖x+ v‖.

Without loss of generality, consider the point x = (1, 0)

and tangent vectors v = (0, θ). Now we can write the
exponential map as

exp(x, v) = eiθ

and the projective retraction as

RP (x, v) = ei arctan θ.

So the distance between them is

d(exp, RP ) = 2 sin((θ − arctan θ)/2),

which has a Taylor expansion at zero as

d(exp, RP ) = θ3/3 +O(θ5).

We can see that, for the unit circle, the projective re-
traction matches the exponential map up to the second
order at zero tangent vectors.

Proof of Lemma 3. For all (x, v) ∈ TM such that y =

x + v is in the neighborhood of M that is partitioned
by F , define r ∈ M to be the unique point such that
y ∈ Fr. Note that

TrFr = NrM,

so if v = 0 then TrFr and TxM are orthogonal com-
plements. Assume v is small enough such that affine
spaces r + TrFr and x + TxM intersect transversely,
define the unique point

y′ = (r + TrFr) ∩ (x+ TxM).

These constructs are illustrated in Figure 2. Further-
more, define

v′ = y′ − x ∈ TxM
u′ = y′ − r ∈ NrM.

Because
RF (x, v) = RP (x, v

′),

then there exists w ∈ TxM such that

RF (x, v) = RP (x, v) +

(
∂RP

∂v
(x,w)

)
(v′ − v),

that is,

RF (x, v) = RP (x, v) +O(‖v′ − v‖).

To prove the theorem, we only need to show

‖v′ − v‖ = O(‖v‖4).

First we show that

‖u′‖ = O(‖v′‖2).

Parameterize M at x as the graph of a function

G : Sx 7→ NxM, Sx ⊂ TxM,

∀v ∈ Sx, x+ v +G(v) ∈M.

We see that
‖G(v′)‖ = O(‖v′‖2).

Let
p′ = x+ v′ +G(v′),

because
d(y′,M) ≤ d(y′, p′),

we have
‖u′‖ ≤ ‖G(v′)‖.

Thus,
‖u′‖ = O(‖v′‖2).

Second, we show that

‖v′ − v‖ = O(‖u′‖2).

Parameterize Fr at r as the graph of a function

L : Sr 7→ NrFr, Sr ⊂ TrFr,

∀u ∈ Sr, r + u+ L(u) ∈ Fr.

We see that
‖L(u)‖ = O(‖u‖2).

For all v, w ∈ Rn, if ‖v‖‖w‖ 6= 0, define angle

∠(v, w) =
{
arccos (〈v, w〉/(‖v‖‖w‖)) , ‖v‖‖w‖ 6= 0

π/2, otherwise.

The first principal angle between two linear subspaces
is defined as: let V,W ⊂ Rn, then

θ1(V,W ) = min{∠(v, w) : v ∈ V,w ∈W}.

Because
θ1(TxM, NxM) = π/2,
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we have

θ1(TxM, NrM) = π/2 +O(‖v‖).

Let
β = ∠(v − v′, u− u′),

since
v − v′ ∈ TxM,

u− u′ ∈ TrFr = NrM,

we have
β ≤ θ1(TxM, NrM)

= π/2 +O(‖v‖).

Thus,
‖v − v′‖ = (sinβ)−1‖L(u)‖

= O(‖L(u)‖)
= O(‖u‖2)

and
‖u− u′‖ = ‖v − v′‖ cosβ

= ‖v − v′‖O(‖v‖).

Because
‖u‖ ≤ ‖u′‖+ ‖u′ − u‖,

we have
‖u‖ ≤ ‖u′‖+ o(‖v − v′‖)

= ‖u′‖+ o(‖u‖2),

that is,
‖u‖ = O(‖u′‖).

We conclude that

‖v′ − v‖ = O(‖u′‖2).

Combining the previous two results gives

‖v′ − v‖ = O(‖v′‖4).

Because
‖v′‖ ≤ ‖v′ − v‖+ ‖v‖,

we have
‖v′‖ = O(‖v‖).

This means
‖v′ − v‖ = O(‖v‖4).

Proof of Theorem 1. Combining Lemmas 2 and 3, we
have

RF (x, tv) = exp(x, tv) + o(t2) + o(t3)

= exp(x, tv) + o(t2),

i.e. RF is a second-order retraction. Beyn (1993, Thm
3.1) showed that N∞

F induces a foliation of a neighbor-
hood of M into Ck c-submanifolds, which intersect M
orthogonally. So RN fits Definition 4 as a retraction in-
duced by a normal foliation, and thus it is second-order.
Recall the circle example in the proof of Lemma 2, if
S1 is defined as the zero set of

F (x) = ‖x‖2 − 1, x ∈ R2,

then RN = RP , which means in this case RN is only a
second-order retraction.

Proof of Lemma 4. By the definitions of the hypothe-
ses, part (1) are identical, part (2) follows immediately
from part (2’), so we only need to show part (3). For
the rest of the proof, x is an arbitrary point in C. To
simplify notation, we will ignore explicit dependence on
x, such that J refers to J(x), and so on. Since J has
full rank, we have QR decomposition

JT = QR,

where Q ∈ Vc,n and R ∈ U+(c) is a upper triangular
matrix of order c with positive diagonal entries. Let

Q̄ = [Q, Q̃] ∈ O(n)

be an orthogonal matrix of order n, whose first c columns
matches Q. Since V ∈ Vd,n, let

Q̃0 = V T

Q̄0 = [Q0, Q̃0] ∈ O(n).

First we show that QTQ0 is non-singular and its
spectral norm is no greater than 1. By (2’),[

J

V

]
=

[
RTQT

Q̃T
0

]

is non-singular. Since R is invertible, this means
[
QT

Q̃T
0

]
is non-singular, and thus[

QT

Q̃T
0

]
Q̄0 =

[
QT

Q̃T
0

]
[Q0, Q̃0]
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is non-singular. Note that Q̃T
0 Q0 = 0, Q̃T

0 Q̃0 = Id, so[
QTQ0 QT Q̃0

0 Id

]
is non-singular, which means QTQ0 is

non-singular. Moreover, let u ∈ Sc, then

‖QTQ0u‖ ≤
∥∥∥∥[QT

Q̃T

]
Q0u

∥∥∥∥
= ‖Q̄TQ0u‖
= ‖Q0u‖
= 1,

which means
ρ(QTQ0) ≤ 1.

Now we prove (3). By (3’),∥∥∥∥∥
[
J

V

]−1
∥∥∥∥∥ ≤ B,

that is, ∀v ∈ Rn, ∥∥∥∥∥
[
J

V

]−1

v

∥∥∥∥∥ ≤ B‖v‖.

This means, ∀w ∈ Rn,

‖w‖ ≤ B

∥∥∥∥[JV
]
w

∥∥∥∥ .
Equivalently, ∀w ∈ Sn,∥∥∥∥[JV

]
w

∥∥∥∥ ≥ 1

B
.

Because ∀u ∈ Sc, Q0u ∈ Sn, so the previous inequality
holds for w = Q0u. Note that

V Q0u = Q̃T
0 Q0u = 0,

the inequality becomes

‖JQ0u‖ = ‖RTQTQ0u‖ ≥
1

B
.

We have shown that QTQ0 is non-singular and non-
expansive, so

∀z ∈ Sc, ‖RT z‖ ≥ 1

B
,

or equivalently,

∀u ∈ Rc, ‖RTu‖ ≥ 1

B
‖u‖.

Define
ũ = R−1u,

then ∀ũ ∈ Rc,

‖RTRũ‖ ≥ 1

B
‖Rũ‖.

Define
ū = RTRũ,

then ∀ū ∈ Rc,

‖R(RTR)−1ū‖ ≤ B‖ū‖.

The left-hand side equals ‖QR(RTQTQR)−1ū‖, that is
‖JT (JJT )−1ū‖ and in short ‖J†ū‖. We conclude that

‖J†‖ ≤ B.

Proof of Theorem 3. For all (x, v) ∈ U ′
α, there exists

(C,K,B, η, ϵ), such that

F ∈ HAJ(Vx, C;α,K,B).

By Lemma 4, we have

F ∈ HNF(C;α,K,B).

Therefore, x+ v ∈ Dα and (x, v) ∈ E−1(Dα).

Proof of Theorem 4. Since U ′
α ⊂ E−1(Dα), the update

sequences {xk}k∈N in RN and RO both satisfy

‖xk+1 − ζ‖ ≤ β‖xk − ζ‖1+α.

Because

d(x0,M) ≤ d(x0,M∩ (x0 +NxM)),

the xk in RN will be remain closer to M than that in
RO after the same number of iterations, and thus RN

converges in no more iterations than RO.
Moreover, at each iteration, RN and RO both eval-

uate F (x) and J(x), and solve an order-c system of
linear equations, see line 5. But the coefficient matrix
for RO is a generic matrix JJT

−1, while that for RN is a
symmetric positive-definite matrix JJT , which admits
triangular storage and faster linear solvers. The matrix
product JJT

−1 takes about 2nc2 floating point opera-
tions (FLOPs), half for multiplications and half for ad-
ditions, while the cross product JJT takes about nc2

FLOPs. LU decomposition of an order-c matrix takes
about 2c3/3 FLOPs, while Cholesky decomposition for
symmetric positive-definite matrices takes about c3/3

FLOPs (Trefethen and Bau, 1997, pp. 175-177). Be-
sides, Cholesky decomposition is always stable, which
saves the need for pivoting operations. Therefore, about
half of the algebraic computation can be saved in each
iteration.

In conclusion, the overall number of operations in
RN is no greater than that in RO.
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